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Abstract

We generalize the Nelder-Mead simplex and LTMADS algorithms and, the
frame based methods for function minimization to Riemannian manifolds. Exam-
ples are given for functions defined on the special orthogonal Lie group SO(n) and
the Grassmann manifold G(n, k). Our main examples are applying the general-
ized LTMADS algorithm to equality constrained optimization problems and, to the
Whitney embedding problem for dimensionality reduction of data. A convergence
analysis of the frame based method is also given.
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1 Introduction

Direct search methods are function minimization algorithms that attempt to minimize a
scalar function f(x), x ∈ Rn, using only evaluations of the function f(x) itself. That is,
they are implicitly and explicitly derivative-free techniques. Typically these algorithms
are easy to code and may be robust to problems where f(x) is discontinuous or noisy
[21]. Three popular direct search methods are the Nelder-Mead simplex algorithm [22],
the mesh adapted direct search algorithms (MADS) [3] and, the frame based methods
[9, 25]. Here we will extend these algorithms to Riemannian manifolds. Two important
applications of these extensions are to equality constrained optimization problems and,
the dimensionality reduction of data via the Whitney projection algorithm [7, 8].

The Nelder-Mead simplex algorithm is a direct search method for function mini-
mization over Rn. (See [18] for a detailed treatment of the algorithm). At each iteration,
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the algorithm starts with an initial simplex in Rn with n + 1 vertices and, returns a
new simplex that is (hopefully) in some sense closer to the point y ∈ Rn that (locally)
minimizes our function f(x). To accomplish this, one or more of the vertices of the
simplex are modified during each iteration. In order to modify the vertices, we need to
be able to compute the centroid (mean) of n vertices, connect two points with a straight
line, and move along the calculated line a specified distance. All of these operations are
trivial in Rn but, become significantly less so when we want to minimize a function over
a Riemannian manifold. The Nelder-Mead algorithm remains popular despite potential
shortcomings. For example, convergence results are generally lacking. Indeed, it is
possible for the algorithm to converge to non-stationary points even if the function to be
minimized is strictly convex [21]. On the positive side, the algorithm is easy to program
and, requires no derivative information. We briefly examine the simplex algorithm in
section 2.

The MADS algorithms [3] proceed by implicitly constructing a mesh around candi-
date solutions for our minimization problem. The function f(x) is evaluated at certain
points on this mesh. If f(x) is decreasing as we evaluate it at the mesh points, we
‘expand’ the mesh, allowing ourselves the ability to search further away from our cur-
rent candidate solution. However, as the MADS algorithms proceed and, we approach
a (local) minimum, the mesh is refined. In this way we can zoom in on the value
y ∈ Rn that (locally) minimizes f(x). Typically, the MADS algorithm will include a
search and a poll step. The (optional) search step will attempt to find a new potential
candidate solution to our minimization problem. The user has nearly complete freedom
in designing the search step. The poll step will look around our current candidate
solution for a better point on our mesh. Unlike the Nelder-Mead algorithm, there are
general convergence results for the MADS algorithms [1, 3]. Since the convergence
results for the MADS algorithms depend on the poll step, the choices for this step of the
algorithms are much more restricted. A particular example of the MADS algorithms,
the lower-triangular or LTMADS algorithm, was given in [3]. It is the LTMADS that
we will deal with in this paper, examining the standard LTMADS in section 6.

Frame based methods include the MADS algorithms as a special case [3, 9, 25].
They allow more general meshes than the MADS algorithms and, searches off of
the mesh points. Of particular interest to us is the fact that the mesh can be freely
rotated and scaled during each iteration of an algorithm. The price to be paid for the
increased generality of the frame based methods, if one wants to show convergence,
is the requirement that a frame based algorithm guarantee that the frame is infinitely
refined [9, 25].

Somewhat recently, there has been an increased interest in optimizing functions
defined over some Riemannian manifold M other than Rn [2, 5, 11, 19, 20, 29]. We
will generalize the Nelder-Mead and LTMADS algorithms to Riemannian manifolds.
In section 3, we will find that there are three main items we need to address when
doing this generalization for the Nelder-Mead algorithm. First, we need to be able to
find the straight lines (geodesics) on our manifoldM connecting two points p, q ∈M.
Secondly, we have to be able to find the Karcher mean on M. This will replace the
centroid used in the Nelder-Mead algorithm. Finally, while the simplex is allowed
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to grow without bound in Rn, when dealing with a general Riemannian manifold the
simplex must be restricted to some well-defined neighborhood ofM at each step. After
addressing the difficulties in section 3, we present the final algorithm in section 4. Some
examples are examined in section 5. There we will minimize a function over the special
orthogonal group SO(n) and the Grassmann manifold G(n, k).

Then we will turn our attention to the LTMADS algorithm. The generalization of
this algorithm to Riemannian manifolds is dealt with in section 7. We will see that, in
comparison to the Nelder-Mead algorithm, the LTMADS algorithm can be extended
to Riemannian manifolds in a rather straightforward way, provided the manifold is
geodesically complete. In particular, we will only need to be able to find geodesics
on our manifold with specified initial conditions and, parallel transport tangent vectors
along some calculated geodesics. Section 8 gives a nontrivial example of the use of
the generalized LTMADS algorithm. There we apply the LTMADS generalization to
the Whitney embedding algorithm [7, 8, 10], which was our original motivation for
extending direct search methods to Riemannian manifolds. The Whitney embedding
problem is equivalent to minimizing a non-differentiable function over G(n, k). In
section 9, we will show how to use the LTMADS algorithm on Riemannian manifolds
to solve constrained optimization problems. The central idea is to treat the zero level
set of our constraints as a Riemannain manifold.

The problem with proving convergence of the LTMADS algorithm given in section 7
is that it is more closely related to the frame based methods in [9, 25] than it is to the
original LTMADS algorithm in [3]. In section 10 we remove this difficulty by modifying
the generalized LTMADS algorithm to a slightly different frame based method. We
can then use the results in [9] for our convergence analysis of this new algorithm. An
example of the frame based method for a constrained optimization problem is also given
in section 10. A discussion follows in section 11.

2 The Nelder-Mead Simplex Algorithm

Here we will briefly review the Nelder-Mead algorithm. A more complete discussion
is given in [18]. The algorithm for minimizing a function f(x), x ∈ Rn, proceeds as
follows. First, fix the coefficients for reflection, ρ > 0, expansion, ε > 1, contraction,
1 > χ > 0, and shrinkage, 1 > σ > 0. The standard choices are ρ = 1, ε = 2,
χ = 1/2 and σ = 1/2. Choose the initial simplex vertices p1, . . . , pn+1 ∈ Rn and,
let fi

.= f(pi) for i = 1, . . . , n + 1. Each iteration of the algorithm is then given by
Algorithm 2.1.

Various termination criterion can be used in the Nelder-Mead algorithm. For
example, MATLAB R©’s fminsearch function terminates the algorithm when the
size of the simplex and the difference in the function evaluations are less than some
specified tolerances. Additional tie-breaking rules for the algorithm are given in [18].

The simplex in the Nelder-Mead algorithm can be visualized as ‘oozing’ over the
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Algorithm 2.1 The Nelder-Mead Simplex Algorithm

1. Order the vertices such that f1 ≤ · · · ≤ fn+1.

2. Try a reflection of pn+1 through the mean of the other points. Let the reflection
point pr be given by

pr = p̄ + ρ(p̄− pn+1),

where p̄ be given by

p̄ =
1
n

n∑
j=1

pj .

Let fr = f(pr). If f1 ≤ fr < fn, replace pn+1 with pr and go to Step 1, else,
go to Step 3 or Step 4.

3. If fr < f1, try to expand the simplex. Find the expansion point pe

pe = p̄ + ε(pr − p̄).

Let fe = f(pe). If fe < fr, replace pn+1 with pe and go to Step 1, else,
replace pn+1 with pr and go to Step 1.

4. If fr ≥ fn, try to contract the simplex.

(a) If fn ≤ fr < fn+1, do an outside contraction. Let

poc = p̄ + χ(pr − p̄).

Find foc = f(poc). If foc ≤ fr, replace pn+1 with poc and go to Step 1,
else, go to Step 5.

(b) If fr ≥ fn+1, do an inside contraction. Let

pic = p̄− χ(p̄− pn+1).

Find fic = f(pic). If fic < fn+1, replace pn+1 with pic and go to Step 1,
else, go to Step 5.

5. Shrink the simplex around p1. Let

pi → p1 + σ(pi − p1),

for i = 2, . . . , n + 1. Go to Step 1.
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function. This is achieved by reflecting the worst vertex at each iteration and, possibly,
expanding the simplex. Once the simplex finds what appears to be a minimum, it will
contract itself around the minimum until no further improvement is possible. This is
the reason the algorithm is referred to as the ‘amoeba algorithm’ in [24].

One of the advantages of the simplex algorithm is that it does not use any derivative
information. However, because of this, many function evaluations may be needed
for the algorithm to converge satisfactorily. It is also possible that the algorithm can
converge to a non-stationary point, even for strictly convex functions [21].

3 Generalizing the Nelder-Mead Simplex Algorithm to
Riemannian Manifolds

Now we consider what needs to be done in order to generalize the Nelder-Mead simplex
algorithm to Riemannian manifolds. Let us notice two things about the algorithm. First,
all of the ‘movements’ of the vertices occur along straight lines in Rn. On Riemannian
manifolds, the concept of a straight line is replaced by that of a geodesic, which is
the shortest possible path connecting two points on a manifold. Secondly, we need
to find a centroid to reflect, expand, and contract the simplex through. The Euclidean
space mean will be replaced with the Karcher mean on our manifolds. Aside from
some subtleties, these are the two main concepts we need in order to generalize the
Nelder-Mead algorithm. We will look at each of these in turn.

3.1 Geodesics

In the Euclidean space Rn, the shortest path between the points x ∈ Rn and y ∈ Rn

is the straight line between these two points. On a curved surface such as the sphere
S2 embedded in R3, we can no longer ask about a straight line between two points
s1 ∈ S2 and s2 ∈ S2. However, we can still ask for the shortest possible path on S2

that connects s1 to s2. This path is called the geodesic between s1 and s2. Note that in
this case, if s1 and s2 are antipodal points on S2, then the geodesic is not unique, since
any great circle through s1 and s2 will define two different paths, both of which are the
same length. So the concept of a geodesic is typically a local concept on a manifold.

For the reflection, expansion and outside contraction step of the Nelder-Mead
algorithm, we not only need to find a geodesic between the two points p̄, the Karcher
mean defined in subsection 3.2, and pn+1 on our Riemannian manifold M, we also
need to be able to extend the geodesic beyond p̄. Assume we start with the n + 1
points p1, . . . , pn+1 ∈ U ⊂M and, have found the Karcher mean p̄ ∈M of the points
p1, . . . , pn. In order to do the reflection, expansion and contraction steps, we need to
find the unique minimal length geodesic γpn+1p̄ : [−2, 1] → U ⊂ M between pn+1

and p̄ such that γpn+1p̄(1) = pn+1 and γpn+1p̄(0) = p̄. Now, the mapping from a point
ω ∈ TpM, the tangent space toM at point p, to a point on the manifoldM is given by
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Expp(ω). Similarly, the mapping from a neighborhood U ⊂M of p to TpM is given
by Logp(q) where q ∈ U and, we assume the mapping is well-defined. So, we seek
an element ω ∈ Tp̄M such that the geodesic γpn+1p̄(τ) .= Expp̄(τω) lies within U for
τ ∈ [−2, 1] and, γ(1) = pn+1 and γ(0) = p̄. Then the reflection, expansion, outside
contraction and inside contraction points, using the standard choices ρ = 1, ε = 2, and
χ = 1/2, will be given by γ(−1), γ(−2), γ(−1/2), and γ(1/2), respectively.

For the shrink step of the Nelder-Mead algorithm, we need to find geodesics
γpip1(τi), i = 2, . . . , n + 1, that connect the points pi to the point p1. Further,
they need to lie within some subset V ⊂ M for τi ∈ [0, 1] where γpip1(0) = p1 and
γpip1(1) = pi, for all i = 2, . . . , n + 1. Then, using the standard σ = 1/2, our new
evaluation points are given by γpip1(1/2) for i = 2, . . . , n + 1.

Since geodesics are repeatedly calculated, the manifolds one works with should
have geodesics that are efficiently calculable. Some typical examples would be Lie
groups [20] and, the Stiefel and Grassmann manifolds [11]. Also, as we saw for the
case of S2, geodesics are only uniquely defined when the points are in some restricted
neighborhood of the manifold M. For the Nelder-Mead algorithm, we would have
n + 1 points to define our simplex ifM is n-dimensional. We require that our simplex
not grow so large that we can no longer calculate all of the geodesics required at each
iteration of the algorithm. This observation will put restrictions on how large we can
allow the simplex to grow in our generalized Nelder-Mead algorithm. We examine this
in more detail in subsection 3.3.

3.2 The Karcher mean

If we want to generalize the Nelder-Mead algorithm to Riemannian manifolds, we need
to replace the p̄ in the algorithm with an appropriate centroid defined on the manifold.
An example of generalizing the Euclidean centroid concept to Riemannian manifolds
is the Karcher mean [16, 17]. The Karcher mean p̄ of the points p1, . . . , pk on our
manifold M is defined as

p̄
.= argmin

q∈M

1
2k

k∑
i=1

d2(pi, q)

.= argmin
q∈M

K(q), (3.1)

where d(·, ·) is the distance function on M. For the points x, y ∈ M, we take d(x, y)
to be the length of the geodesic connecting x and y.

The Karcher mean is only defined locally on a manifold. This means that the points
pi ∈ M in (3.1) must lie within some restricted neighborhood of M in order for the
Karcher mean to exist and be unique. For instance, if s1 is the north pole and s2 is the
south pole on S2, then the entire equator qualifies as a Karcher mean. Similar to the
geodesic case, this will place restrictions on how large our simplex can grow.

An algorithm for calculating the Karcher mean is presented in [20, 32]. Let us
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illustrate the algorithm when our manifold is the Lie group SO(3), where a point
p ∈ SO(3) is a 3-by-3 matrix satisfying the criteria pT p = I and det(p) = 1. Let
TpSO(3) be the tangent space to SO(3) at the point p. Then, p̄ is the (local) Karcher
mean if [16]

0 = −1
k

k∑
i=1

Logp̄(pi), (3.2)

where 0 is the origin of Tp̄SO(3). In fact, the right-hand side of (3.2) is the gradient
of K(q) in (3.1) when Logp̄ is replaced by Logq. This suggests a gradient descent
algorithm, which is the method used in [20, 32].

On SO(3), let us use the Frobenius norm on TpSO(3) to induce the Riemmanian
metric on SO(3). Then Expp(ω) = p exp(pT ω) and, Logp(q) = p log(pT q), where
q, p ∈ SO(3), ω ∈ TpSO(3) and, exp and log have their usual matrix interpretation.
Then, the method for finding the Karcher mean is given by Algorithm 3.1. This
algorithm will also work for more general connected, compact Lie groups.

Algorithm 3.1 The Karcher Mean Algorithm for SO(3) [20, 32]
Assume we have the points p1, . . . , pn ∈ SO(3). Fix a tolerance δ > 0 and set
q = p1. Iterate the following:

1. Find

ω =
1
n

n∑
i=1

log
(
qT pi

)
.

If ‖ω‖ < δ, return p̄ = q and stop, else, go to Step 2.

2. Let

q → q exp(ω)

and go to Step 1.

In the above example we made heavy use of the Exp and Log mappings. So, in
order to efficiently calculate the Karcher mean, we would need manifolds that have
tractable Exp and Log mappings. Examples of such manifolds are given in [27]. These
include the general linear group GL(n) of invertible n-by-n matrices and it’s subgroups,
e.g., SO(n), as well as quotients of GL(n), e.g., the Grassmann manifold G(n, k) of
k-planes in Rn. We also note that a different method for calculating a Karcher-like
mean for Grassmann manifolds is presented in [2].
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3.3 Restricting the simplex growth

As alluded to in the previous subsections, if we let our simplex grow without bound, it
may no longer be possible to compute the required geodesics or the Karcher mean. For
the example of SO(3) in subsection 3.2, we have four restrictions on the neighborhood
for the Karcher mean algorithm [20]. For simplicity, assume that we are trying to
calculate the Karcher mean in some neighborhood U ⊂ SO(3) around the identity
element e ∈ SO(3). We will take U to be a open ball of radius r around e, i.e.,
U = Br(e). Then, the tangent space TeSO(3) is given by the Lie algebra so(3) of
3-by-3 skew-Hermitian matrices. The four restrictions on U are:

1. The log function needs to be well-defined. Let Bρ(0) be the ball of radius ρ
around the identity element 0 ∈ so(3), where ρ is the largest radius such that exp
is a diffeomorphism, i.e., the injectivity radius. Then we need U ⊂ exp(Bρ(0)).
Since exp(Bρ(0)) = Bρ(e), we can take U = Bρ(e) for this requirement to be
satisfied.

2. We call a set V ⊂ SO(3) strongly convex [29] if, for any X, Y ∈ V , the
geodesic γXY (τ) ⊂ V connecting X and Y is the unique geodesic of minimal
length between X and Y in SO(3). We require U to be a strongly convex set.

3. Let f : V ⊂ SO(3) → R. We call f convex [29] if, for any geodesic γ(τ) :
[0, 1] → V ,

(f ◦ γ)(τ) ≤ (1− t)(f ◦ γ)(τ) + t(f ◦ γ)(τ), (3.3)

for t ∈ [0, 1]. If the inequality is strict in (3.3), we call f strictly convex. The
function d(e, p) must be convex on U , where p ∈ U . The largest r such that
U = Br(e) satisfies 2 and 3 is called the convexity radius.

4. The function K(q) in (3.1) is strictly convex on U , for q ∈ U .

The above restrictions also hold for a general Lie group G. As shown in [20], as long
as there is a q ∈ G such that the points p1, . . . , pn ∈ G all lie in the open ball Bπ/2(q),
then we will satisfy the requirements. Similar computationally tractable restrictions
would need to be derived for any Riemannian manifold to guarantee that the Karcher
mean can be found.

As stated in subsection 3.1, we need to be able to extend the geodesic from pn+1

through p̄ in order to do the reflection, expansion and outside contraction steps. It
may be possible to extend the geodesics by changing to a different neighborhood that
includes the other points of the manifold as well as pr, pe and poc. This is possible for,
e.g., Grassmann manifolds [2]. Here one needs to be careful that the restrictions for
computing the Karcher mean are still met in the new neighborhood. Alternately, one
could allow the ρ, ε and χ parameters to vary as the algorithm is run, so that we never
have to leave the current neighborhood during the current iteration. Another possibility
is to have the function we are trying to minimize return an infinite value if we leave
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the current neighborhood. This is similar to enforcing box constraints when using the
Nelder-Mead algorithm in Rn. Note that the inside contraction and the shrink steps of
the algorithm will not cause any problems since the midpoint of the geodesic is already
contained in our neighborhood.

4 The Nelder-Mead simplex algorithm on Riemannian
manifolds

Now we have all of the pieces needed in order to extend the Nelder-Mead algorithm
to a Riemannian manifold M. For simplicity, assume we have appropriate methods in
place to restrict the growth of the simplex at each iteration and, fix the coefficients for
reflection, ρ = 1, expansion, ε = 2, contraction, χ = 1/2, and shrinkage, σ = 1/2.
Choose the initial simplex vertices p1, . . . , pn+1 ∈ M. In the following we let fi

.=
f(pi) for i = 1, . . . , n + 1. If the requirements of subsections 3.1 and 3.2 are met, i.e.,
the geodesics are well-defined and we can calculate the Karcher mean, each iteration
of the generalized Nelder-Mead simplex algorithm on the Riemannian manifold M is
then given by Algorithm 4.1.

The tie breaking rules and termination criterion alluded to in section 2 can be applied
to our generalized Nelder-Mead algorithm. Here, the size of the simplex would need
to be intrinsically defined on the manifold M. The above algorithm would also need
to be modified depending on the method used to restrict the growth of the simplex. For
example, if γpn+1p̄(−2) is not well-defined or, we could not calculate the Karcher mean
in the next iteration, we could return an infinite value for the function evaluation, which
amounts to skipping the expansion step. Alternately, we could adjust the values of ρ, ε
and χ, in this iteration, so that the geodesic is well-defined and, the Karcher mean can
be calculated in the next step.

5 Examples of the generalized Nelder-Mead algorithm

Now we will look at two examples of the generalized Nelder-Mead algorithm in some
detail. The first will be minimizing a function over the special orthogonal groupSO(n).
The second will look at the algorithm when our function to be minimized is defined
over the Grassman manifold G(n, k). We will review both of these manifolds below,
paying particular attention to the problem of calculating geodesics and the Karcher
mean efficiently.

5.1 SO(n)

Let us collect all of the information we will need in order to perform the Nelder-
Mead simplex algorithm over the special orthogonal group SO(n), an n(n − 1)/2
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Algorithm 4.1 The Nelder-Mead Simplex Algorithm for Riemannian Manifolds

1. Order the vertices such that f1 ≤ · · · ≤ fn+1.

2. Find the Karcher mean p̄ of the points p1, . . . , pn. Let U ⊂ M be a neigh-
borhood of p̄ satisfying all of the convexity conditions of subsection 3.2. Find
the geodesic γpn+1p̄ : [−2, 1] → U as in subsection 3.1. Try a reflection of
pn+1 through p̄ by letting the reflection point be given by pr = γpn+1p̄(−1).
Let fr = f(pr). If f1 ≤ fr < fn, replace pn+1 with pr and go to Step 1, else,
go to Step 3 or Step 4.

3. If fr < f1, try to expand the simplex. Find the expansion point pe =
γpn+1p̄(−2). Let fe = f(pe). If fe < fr, replace pn+1 with pe and go
to Step 1, else, replace pn+1 with pr and go to Step 1.

4. If fr ≥ fn, try to contract the simplex.

(a) If fn ≤ fr < fn+1, do an outside contraction. Let poc = γpn+1p̄(−1/2).
Find foc = f(poc). If foc ≤ fr, replace pn+1 with poc and go to Step 1,
else, go to Step 5.

(b) If fr ≥ fn+1, do an inside contraction. Let pic = γpn+1p̄(1/2). Find
fic = f(pic). If fic < fn+1, replace pn+1 with pic and go to Step 1, else,
go to Step 5.

5. Shrink the simplex around p1. Let V ⊂M be a neighborhood of p1 satisfying
all of the convexity conditions of subsection 3.2. Find the geodesics γpip1 :
[0, 1] → V , i = 2, . . . , n + 1, as in Section 3.1. Let

pi → γpip1(1/2),

for i = 2, . . . , n + 1. Go to Step 1.

diimensional manifold [20, 27]. A point p ∈ SO(n) satisfies the conditions pT p = I
and det(p) = 1. An element ω ∈ TpSO(n) is a skew-Hermitian matrix. Also, the
Riemannian metric on SO(n) is induced by the Frobenius norm on the tangent space.
So, for ω1, ω2 ∈ TpSO(n), the metric h(ω1, ω2) is given by

h(ω1, ω2) = Tr
(
ωT

1 ω2

)
. (5.1)

The Exp and Log maps are

Expp(ω) = p exp(ω) and (5.2)

Logp(q) = log(pT q), (5.3)

where p, q ∈ SO(n), ω ∈ TpSO(n), exp and log have their standard matrix interpre-
tation and, we assume Logp(q) is well-defined.

We have already seen in subsection 3.3 that we need p1, . . . , pm ∈ Bπ/2(q) for some
q ∈ SO(n) in order for the Karcher mean algorithm (Algorithm 3.1 in subsection 3.2) to
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be guaranteed to converge. The last remaining pieces of information are the formulas
for the geodesic γqp(τ) from p ∈ SO(n) to q ∈ SO(n) and, the distance d2(p, q)
between p and q. These are given by

γqp(τ) = p exp
[
τ log(pT q)

]
and (5.4)

d2(p, q) =
1
2
Tr
([

log(pT q)
]2)

. (5.5)

We tested the Nelder-Mead algorithm on an eigenvalue decomposition problem.
Given the symmetric, positive definite matrix

X =

 5 2 1
2 7 3
1 3 10

 , (5.6)

we wanted to find the point p ∈ SO(3) such that the sum of the squares of the off-
diagonal elements of pXpT , denoted by OD(X, p), was minimized. We randomly
selected a point g0 ∈ SO(3) as an initial guess for the solution. This formed one of the
vertices of our initial simplex. The other vertices were randomly chosen such that the
simplex was non-degenerate and, satisfied the size restrictions. We did this for 1000
different initial guesses. If the simplex was not improving the function evaluation after
100 consecutive iterations, we restarted with a new initial simplex around the same
g0. The reason for this is that the convergence of the Nelder-Mead algorithm, in this
example, was very dependent on the choice for the initial simplex. We restarted 17%
of our runs using this technique. Of course here we had the advantage of knowing the
(unique) minimal value of our function, namely minp OD(X, p) = 0. We’ll comment
on this more in section 11. Restricting the size of the simplex was accomplished by
choosing our neighborhood to be Bπ/4(p̄) and allowing the ρ, ε and χ parameters to
vary in each iteration of the algorithm. Note that we used r = π/4, not r = π/2, for
better numerical results. The maximum allowed value of ε at each iteration is found
via the formula

εmax =
π

4

(
−1

2
Tr
[(

log(p̄T pn+1)
)2])−1/2

. (5.7)

If εmax < 2, we will need to scale the ρ, ε and χ parameters during the current iteration.
The results are shown in Table 1, where gf is the solution returned by the Nelder-Mead
algorithm and cputime is the MATLAB R© command for measuring the CPU time.

Table 1: Eigenvalue Decomposition Problem

Average OD(X, g0) Average OD(X, gf ) Average cputime
12.1817 2.5729 e(-16) 17.7475 secs
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5.2 G(n, k)

For the Grassmann manifoldG(n, k) of k-planes in Rn, we need to find easily calculable
formulas for the geodesic between the points p, q ∈ G(n, k) and, the Karcher mean
of the points p1, . . . , pm ∈ G(n, k) [2, 11]. A point p ∈ G(n, k), pT p = I , actually
represents a whole equivalence class of matrices [p] that span the same k-dimensional
subspace of Rn. Letting ok ∈ O(k), where O(k) is the k-by-k orthogonal matrix
group, we have that

[p] = {p ok |ok ∈ O(k)} . (5.8)

(Note that we will treat p and q as being points on G(n, k) as well as being n-by-k
matrix representatives of the equivalence class of k-planes in Rn.) The tangent space
to p ∈ G(n, k) is given by

TpG(n, k) =
{

ω
∣∣∣ω = p⊥g and g ∈ R(n−k)×k

}
, (5.9)

where p⊥ is the orthogonal complement to p, i.e., p⊥ = null(pT ). The dimension of the
tangent space, and, hence, of G(n, k), is k(n−k). The Riemannian metric on G(n, k) is
induced by the Frobenius norm on the tangent space. That is, for ω1, ω2 ∈ TpG(n, k),
the metric h(ω1, ω2) is given by

h(ω1, ω2) = Tr(ωT
1 ω2)

= Tr(gT
1 g2). (5.10)

This metric is the unique one (up to a constant multiple) that is invariant under the
action of O(n) on Rn, i.e., rotations and reflections of Rn. The Expp map is given by

Expp(ω) = pV cos(Θ) + U sin(Θ), (5.11)

where ω ∈ TpG(n, k) has the SVD ω = UΘV T . Also, the Logp map is given by

Logp(q) = UΘV T , (5.12)

where p⊥pT
⊥q(pT q)−1 = UΣV T and Θ = arctan(Σ), when it is well-defined.

Now we can find the geodesic formula between the points p, q ∈ G(n, k). We will
require that p and q are close enough together that pT q is invertible. First, we find the
SVD of

p⊥pT
⊥q(pT q)−1 = UΣV T (5.13)

and, let Θ = arctan(Σ). Then the geodesic from p to q is given by

γqp(τ) = [pV U ]
[

cos(Θτ)
sin(Θτ)

]
, (5.14)
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where γqp(0) = p and γqp(1) = q. The distance between p and q induced by (5.10) is
given by

d2(p, q) =
k∑

i=1

θ2
i , (5.15)

where the θi are the diagonal elements of Θ. Since the θi are the principle angles
between p and q and, pV and (pV cos(Θ) + U sin(Θ)) are the associated principle
vectors, we can use Algorithm 12.4.3 of [12] to find the require quantities in (5.14) and
(5.15). If we have the SVD

pT q = V cos(Θ)ZT , (5.16)

then pV and qZ give us the principle vectors and, U sin(Θ) = qZ − pV cos(Θ). In
practice, we found Algorithm 5.1 for the Log map to be much more stable numerically.

Algorithm 5.1 The Logp(q) Map for Grassmann Manifolds
Given points p, q ∈ G(n, k), the following returns Logp(q):

1. Find the CS decomposition pT q = V CZT and pT
⊥q = WSZT , where V , W

and Z are orthogonal matrices and, C and S are diagonal matrices such that
CT C +ST S = I [12]. Note that C will always be a square, invertible matrix.

2. Delete (add) zero rows from (to) S so that it is square. Delete the corresponding
columns of W or, add zero columns to W , so that it has a compatible size with
S.

3. Let U = p⊥W and Θ = arctan(SC−1).

Then U , Θ and V are as in (5.12).

Given the points p1, . . . , pm ∈ G(n, k), the Karcher mean is given by

p̄ = argmin
q∈G(n,k)

m∑
j=1

d2(q, pj)

= argmin
q∈G(n,k)

m∑
j=1

k∑
i=1

θ2
i,j . (5.17)

So p̄ ∈ G(n, k) is the k-plane in Rn that minimizes the sum of the squares of all of
the principle angles between itself and the m other k-planes. We will use a modified
version of Algorithm 4 in [5] in order to calculate the Karcher mean for the Grassmann
manifold, given by Algorithm 5.2.

The final item we need to deal with is the restrictions we need to put on our simplex
in order to guarantee that we can find the required geodesics and Karcher mean. First,
we can always find a unique geodesic between p ∈ G(n, k) and q ∈ G(n, k) as long
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Algorithm 5.2 Karcher Mean Algorithm for Grassmann Manifolds
Given the points p1, . . . , pm ∈ G(n, k), fix a tolerance δ > 0 and set q = p1. Iterate
the following:

1. Let

ω =
1
m

m∑
i=1

Logq(pi).

If ‖ω‖ < δ, return p̄ = q, else, go to Step 2.

2. Find the SVD

UΣV T = ω

and, let

q → qV cos(Σ) + U sin(Σ).

Go to Step 1.

as every principle angle between p and q is less than π/2 [30]. Also, if there exists
a q ∈ G(n, k) such that p1, . . . , pn ∈ Bπ/4(q), then the Karcher mean exists and is
unique [5, 31]. Since d(p, q) ≤ min(

√
k,
√

n− k)π/2 for any p, q ∈ G(n, k) [30], the
simplex can typically grow quite large in practice.

To test the algorithm, let us consider the simple example of minimizing the squared
distance to In,k, i.e., the first k columns of the n-by-n identity matrix. Here we’ll take
n = 5 and k = 2. Then the function we are trying to minimize is given by (5.15).
We pick a random element g0 ∈ G(5, 2) as an initial guess for the minimizer. This
was one of the vertices of our initial simplex. The other vertices were chosen around
g0 such that the restrictions on the size of the simplex were met and, the simplex was
non-degenerate. We did this for 1000 different g0. In order to restrict the size of
the simplex, we chose our neighborhood to be Bπ/4(p̄) and, allowed the ρ, ε and χ
parameters to vary in each iteration of the algorithm. Given (5.15) for our distance
formula, we see that only the expansion step of the simplex algorithm can cause our
geodesic to leave the neighborhood Bπ/4(p̄). We can find the maximum allowed value
of ε from the formula

εmax =
π

4

(
k∑

i=1

θ2
i

)−1/2

. (5.18)

If εmax > 2, we can proceed with the iteration without having to adjust ρ, ε and
χ, otherwise, we need to scale these parameters. The results are shown in Table 2,
where gf is the solution returned by the Nelder-Mead algorithm and cputime is the
MATLAB R© command for measuring the CPU time.
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Table 2: Minimizing d2(I5,2, g)

Average d2(I5,2, g0) Average d2(I5,2, gf ) Average cputime
1.9672 2.1055 e(-15) 7.0491 secs

6 The LTMADS algorithm

The mesh adaptive direct search (MADS) algorithms attempt to minimize a function
f(x), x ∈ Ω, without explicitly or implicitly using any derivative information [3].
So the MADS algorithms are similar in spirit to the Nelder-Mead simplex algorithm,
though the details of implementation differ. Also, the MADS algorithms have general
convergence results [1, 3], something that is lacking for the Nelder-Mead algorithm.

We will take the feasible set Ω to be Rn. The algorithms start at iteration k = 0
with an initial guess p0 ∈ Rn and, an implicit mesh M0. The mesh itself is constructed
from some finite set of directions D ⊂ Rn, where the n-by-nD matrix D satisfies the
restrictions:

1. Nonnegative linear combinations of the columns of D span Rn, i.e., D is a
positive spanning set, and;

2. Each column of D is of the form Gz for some fixed matrix G ∈ GL(n) and
integer-valued vector z ∈ Zn.

The columns of D will be dilated by the mesh size parameter ∆m
k > 0. From our

current mesh, we select 0 ≤ κ < ∞ points to evaluate f(x) at. All of the evaluation
points are put into the set Sk. Then, at each iteration k, the current mesh will be defined
by

Mk =
⋃

p∈Sk

{p + ∆m
k Dz |z ∈ NnD } . (6.1)

Each iteration of the MADS algorithms have an (optional) search step and a poll
step. The search step selects the κ points from the mesh Mk in any user defined way.
The idea is to attempt to find a point on Mk that will reduce the value of f(x) and,
hence, give us a better candidate solution pk to our problem. The poll step is run
whenever the search step fails to generate an improved candidate solution. Then we do
a local exploration of the current mesh Mk near the current candidate solution pk. In
addition to the mesh size parameter ∆m

k , the MADS algorithms also have a poll size
parameter ∆p

k that satisfies the conditions

1. ∆m
k ≤ ∆p

k for all k, and;

2. limk∈K ∆m
k = 0 ⇔ limk∈K ∆p

k = 0 for any infinite set K ⊂ N of indices.
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If both the search and poll steps fail to find an improving point on Mk, we refine the
mesh by letting ∆m

k+1 < ∆m
k .

At iteration k, the mesh points chosen from Mk around our current best point pk

during the poll step are called the frame Pk, where

Pk = {pk + ∆m
k d |d ∈ Dk } , (6.2)

where d = Duk for some uk ∈ NnD . Dk and d need to meet certain other requirements
given in [3]. These requirements will be satisfied by the specific MADS algorithm we
examine below, so we will not concern ourselves with them. The same comment holds
for the updating procedures for ∆m

k and ∆p
k. So we have the following algorithm:

Algorithm 6.1 A General MADS Algorithm [3]
Initialize the parameters p0, ∆m

0 ≤ ∆p
0, D, G and k = 0.

1. Perform the (optional) search step and (possibly) the poll step.

2. Update ∆m
k and ∆p

k, set k = k + 1 and return to Step 1.

Let us describe the lower-triangular, mesh adaptive direct search (LTMADS) algo-
rithm in [3] in more detail. Specifically, in the language of [3], we will look at the
LTMADS algorithm with a minimal positive basis poll and dynamic search. We will
be trying to minimize some function f(x) over Rn. The general idea of the algorithm
is to have an adaptive mesh around the current candidate y for our optimal point. At
some subset of the points of the current mesh, we will do a poll to see if we can find
a point z such that f(z) < f(y). If this occurs we will ‘expand’ the current mesh in
order to look at points further away from z that could potentially reduce the value of
f(x). Also, if a poll is successful, we will search further along the direction that helped
reduce the value of f(x). Now, if our search and poll steps prove unsuccessful, then
we may be around a (local) minimum. In that case, we ‘contract’ the mesh around our
current candidate y for the point that minimizes f(x). In this way, we can do refined
search and poll steps around y. An important point is that the mesh is never actually
constructed during the algorithm. All that needs to be done is to define the search and
poll step points so that they would be points on the mesh if it was explicitly constructed.
This and many more details can be found in [3].

Our version of the LTMADS will proceed as follows. Let G = I and D = [I − I].
Initialize an iteration counter k = 0, poll counter lc = 0 and, the mesh (∆m

0 = 1) and
poll (∆p

0 = n) size parameters. Let p0 ∈ Rn be an initial guess for the minimizer of
f(x) and, f0 = f(p0). We will describe the poll step of the algorithm first since the
search step depends on the results of the previous poll step. Let l = − log4(∆m

k ). The
first step is to create an n-dimensional vector bl. First we check if bl was previously
created. If lc > l, return the previously stored bl and exit the bl construction step.
Otherwise, let lc = lc + 1 and construct bl. To do this construction, randomly select an
index ι from the set N = {1, . . . , n} and, randomly set bl(ι) to be±2l. For i ∈ N \{ι},
randomly set bl(i) to be one of the integers from the set S = {−2l + 1, . . . , 2l − 1}.
Save ι and bl.
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Now that we have bl, we need to construct the points on our current mesh where we
will potentially evaluate f(x) at during the poll step. Construct the (n− 1)-by-(n− 1)
lower-triangular matrix L as follows. Set the diagonal elements of L randomly to ±2l.
Set the lower components of L to a randomly chosen element of the set S given above.
Finally, randomly permute the rows of L. Construct the new matrix B from bl and L
such that

B =

 L(1 : ι− 1, :) bl(1 : ι− 1)
0T bl(ι)

L(ι : n− 1, :) bl(ι + 1 : n)

 . (6.3)

Randomly permute the columns of B. Finally, construct the matrix

Dk = [B −B1] . (6.4)

Having constructed the matrix Dk, we will now evaluate f(x) at the mesh points
x = di, where di = pk + ∆m

k Dk(:, i), i = 1, . . . , n + 1. If we find a di such that
f(di) < fk, let pk+1 = di and fk+1 = f(di) and, exit the loop. Otherwise, let
pk+1 = pk and fk+1 = fk. After the completion of the loop let k = k + 1. Notice
that we do not necessarily evaluate f(x) at all of the di.

Now we can describe the search step at iteration k + 1, which actually precedes the
poll step. If the previous poll step at iteration k found an improved candidate solution
pk+1, find the mesh point sk+1 = pk +4∆m

k Dk(:, i), where Dk(:, i) was the direction
that improved the function evaluation in the previous poll step during iteration k. If
h = f(sk+1) < fk+1, let pk+2 = sk+1 and fk+2 = h, update the iteration count to
k + 2 and, skip the poll step. Otherwise, proceed to the poll step for iteration k + 1.

After doing the search and poll steps, the size parameters will be updated according
to the following rule. If the search and poll steps did find an improved candidate
solution pk+1, we may be around a local minimum of f(x). Then we want to refine the
mesh by letting ∆m

k+1 = 1/4∆m
k . Otherwise, we want to allow ourselves to search in a

larger neighborhood around our current candidate solution in order to try and reduce the
value of f(x) further. However, we also want to restrict the size of the neighborhood
that we look in. So, if we found an improved candidate solution pk+1 in the search
or poll step and ∆m

k < 1/4, let ∆m
k+1 = 4∆m

k . Otherwise, let ∆m
k+1 = ∆m

k . Finally,
update the poll size parameter ∆p

k+1 = n
√

∆m
k+1.

There is a choice of termination criterion that can be used for the LTMADS algo-
rithm. One can terminate the algorithm when ∆p

k drops below some specified tolerance.
Alternately, one could choose to end the iterations when a specified number of function
evaluations is exceeded. These two termination criterion can be combined, exiting the
algorithm whenever one of the criteria are met, as was done in [3]. Finally, convergence
results for LTMADS are also examined in [1, 3].
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7 The LTMADS algorithm on Riemannian manifolds

How can we generalize the LTMADS algorithm to a Riemannian manifold M? The
key insight is to realize that the Dk are tangent vectors to our current candidate solution
pk ∈ Rn. So, the mesh is actually in the tangent space Tpk

Rn. Let us examine this
in more detail when M is a sub-manifold of Rn. In section 8 we will look at an
example when we do not have an M that is explicitly embedded in Rn. Note that the
length we travel along a geodesic in the LTMADS algorithm will be the length of the
corresponding tangent vector.

At each iteration k, we have a current candidate solution to our problem given by
pk. In the search step, if it is performed during the current iteration, we evaluate f(x)
at the point sk = pk−1 + 4∆m

k−1Dk−1(:, j), where Dk−1(:, j) was the direction that
improved the function evaluation in the previous poll step. Similarly, the poll step
potentially evaluates f(x) at the points di = pk + ∆m

k Dk(:, i), i = 1, . . . , n + 1. So,
to our current candidate solution pk, we are adding some vector v = Exppk

(ω) = ω,
where ω ∈ Tpk

Rn ' Rn.

Now, the vectors that we add to pk are on a mesh. It follows that this mesh actually
is in the tangent space Tpk

Rn, with each point on the mesh corresponding to some
tangent vector at pk. Further, aside from ‘expanding’ or refining the mesh, each point
in the mesh, which corresponds to some tangent vector, is parallel transported to the
new candidate solution pk. That is, the mesh is not ‘rotated’ in Rn as we move from
one candidate solution to a new one. This is how, e.g., we can use the same bl to
initialize the construction of Dk and Dk′ when log4(∆m

k ) = log4(∆m
k′

).

A brief word on restricting the size of our tangent vectors is in order. As shown
in [3], we have that ‖di − pk‖2 ≤

√
n∆m

k . So, we can control how far we need to
move along a geodesic by controlling the size of ∆m

k . However, this is not much of
a concern in the LTMADS algorithm because we are given initial conditions pk and
ω ∈ Tpk

M for our geodesic and, move a time step τ = 1 along the geodesic given by
γ(τ) = Exppk

(τω). Provided our manifoldM is geodesically complete, as it is when
our manifold is Rn, we can move as far along the geodesic as we wish. Since we never
have the two-endpoint problem of trying to find a geodesic that connects the two points
p, q ∈ M, nor do we need to find a Karcher mean, we do not typically have the need
to restrict ourselves to some neighborhood U ⊂ M, as we did for the Nelder-Mead
algorithm. We can remove the requirement thatM be geodesically complete by using,
potentially position dependent, restrictions on the size of ∆p

k. ∆p
k is the upper bound

on the lengths of the geodesics considered at any poll step. We would also require that
the search step geodesic is also calculable.

Let us walk through how the LTMADS algorithm will be modified when we use it
on a Riemannian manifold M of n dimensions, which we will assume is geodesically
complete. We are trying to minimize the function f(q), where q ∈ M. Let p0 ∈ M
be our initial candidate solution. As long as we remain at p0, the LTMADS proceeds
exactly as above except for one change. Our mapping of the set of tangent vectors
Dk ∈ Tp0M into M will now be given by di = Expp0

(∆m
k ωi), where ωi ∈ Dk for
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i = 1, . . . , n + 1.

Now assume that the previous poll step found a new candidate solution pk, i.e., we
found a new potential solution to our minimization problem. Then we will need to do
the search step. This, however, is trivial. If the improving geodesic from the previous
poll step is given by Exppk−1

(∆m
k−1ωj), then the point sk where we need to evaluate

f(q) at is given by sk = Exppk−1
(4∆m

k−1ωj).

The only remaining problem is how to modify the poll step after we find a new
candidate solution pk. At pk−1 we have the vectors bl and the columns of D. These
are parallel transported along the geodesic we previously computed connecting pk−1

to our new candidate solution pk. This is exactly what we do in Rn. There is a unique
way to do parallel transportation onM that depends linearly on the tangent vector to be
transported, does not change the inner product of two tangent vectors (compatible with
the metric) and, does not ‘rotate’ the tangent vector (torsion-free). Now, after the first
parallel transport, G = I will go to some n-by-n orthogonal matrix O, because parallel
transport preserves the inner products of tangent vectors. So now D = [O − O].
Remember that we require d = Duk for some uk ∈ NnD , where d is a column of
the matrix Dk in (6.4). When D = [I − I] this was accomplished with our above
construction of Dk in (6.4). Now, however, we need to remember that a negative
element of the n-by-n B matrix in (6.3) corresponds to one of the columns of the −I
matrix in D. So, after parallel transporting our vectors, we can no longer use B as
given in (6.3). Rather, B must be constructed as follows. Let

B
′

=
[

B̂
0n×n

]
, (7.1)

where B̂ is the matrix in (6.3). In each column of B
′
, find the negative elements. If

one of these elements is bij , let bi(j+n) = 0 be replaced by −bij > 0 and set bij = 0.
Finally, our new B matrix is given by

B = DB
′
. (7.2)

Note, however, that this procedure is equivalent to simply letting B → OB in (6.3).
Further, this implies that we do not need to explicitly parallel transport the bl or alter
the method of finding the B matrix, since these are easily given once we have parallel
transported the G matrix. Everything else will proceed as in the poll step given above
for the LTMADS algorithm in Rn.

8 The Whitney embedding algorithm

Now we’ll examine the problem that led to our consideration of direct search methods
over Riemannian manifolds: the Whitney embedding algorithm [7, 8, 10]. This is a
particularly useful method for reducing the dimensionality of data. As we will see, the
problem is well suited to the generalized LTMADS algorithm since we are required to
minimize a non-differentiable function over G(n, k).
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Let us first recall Whitney’s theorem.

Theorem 8.1 Whitney’s Easy Embedding Theorem [15]

Let M be a compact Hausdorff Cr n-dimensional manifold, 2 ≤ r ≤ ∞. Then there
is a Cr embedding of M in R2n+1.

Let M⊂ Rm be an n-dimensional manifold. The method of proof for theorem 8.1 is,
roughly speaking, to find a (2n+1)-plane in Rm such that all of the secant and tangent
vectors associated with M are not completely collapsed when M is projected onto
this hyperplane. Then this element p ∈ G(m, 2n + 1) contains the low-dimensional
embedding of our manifold M via the projection pTM ⊂ R2n+1. An important idea
is to make this embedding cause as little distortion as possible. By this we mean, what
p ∈ G(m, 2n + 1) will minimize the maximum collapse of the worst tangent vector?
In this way we can keep the low-dimensional embedding from almost self-intersecting
as much as possible. It is also possible to achieve a close to isometric embedding by
finding an optimal p ∈ G(m, 2n + 1) [10].

Now, in practice, we will only have some set P = {x|x ∈ M ⊂ Rm} of sample
points from our manifold M. We can then form the set of unit length secants Σ that
we have available to us, where

Σ =
{

x− y
‖x− y‖2

∣∣∣∣x,y ∈ P
}

(8.1)

= {σi|i = 1, 2, . . . } .

So now our problem is stated as finding an element p̂ ∈ G(m, 2n + 1) such that

p̂ = argmin
p∈G(m,2n+1)

[
− min

σi∈Σ
‖pT σi‖2

]
= argmin

p∈G(m,2n+1)
S(p). (8.2)

The function S(p) in (8.2) is non-differentiable, so we need to use a direct search method
to minimize it over G(m, 2n + 1). A similar method for finding an approximation to
our p̂ was presented in [8] where a smooth function Ŝ(p) was used to approximate our
S(p). Then the algorithm in [11] was used to minimize Ŝ(p) over G(m, 2n + 1). Also,
the dimensionality reduction in (8.2) can be done by reducing the embedding dimension
by one and iterating [10]. However, this leads to a concave quadratic program who’s
solution method is quite complicated [6].

Since the Whitney algorithm is performed over G(n, k), which is a geodesically
complete manifold [2], let us give the required formulas in order to run the LTMADS
algorithm [11]. We need to be able to find a geodesic given initial conditions. Also, we
need to be able to parallel transport tangent vectors along this geodesic. Let p ∈ G(n, k)
and ν, ω ∈ TpG(n, k), where we have the SVD ν = UΣV T . Then, the geodesic γ(τ)
with γ(0) = p and γ̇(0) = ν will be given by

γ(τ) = [pV U ]
[

cos(Στ)
sin(Στ)

]
V T . (8.3)
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The parallel translation ω(τ) of ω along γ(τ) in (8.3) is

ω(τ) =
(

[pV U ]
[
− sin(Στ)
cos(Στ)

]
UT + U⊥UT

⊥

)
ω. (8.4)

Also, the G we start with will be a k(n − k)-dimensional identity matrix which will
form an orthonormal basis, after reshaping the columns, for the tangent space given by
(see (5.9) also)

TpG(n, k) =
{

ω
∣∣∣ω = p⊥g and g ∈ R(n−k)×k

}
. (8.5)

It is this G that we will parallel transport, as the LTMADS algorithm proceeds, as
follows. Each column of G corresponds to to a g in (8.5) when it is reshaped into
an (n − k)-by-k matrix. We then multiply these matrices by p⊥. It is these matrices
that we will parallel transport, the matrix G being a convenient method for storing the
resulting g matrices.

For a numerical example, let us consider the embedding in R20 of the ten-dimensional
complex Fourier-Galerkin approximation to the solution u(x, t) of the Kuramoto-
Sivashinsky equation [7, 8]

ut + 4uxxxx + 87
(

uxx +
1
2
(ux)2

)
= 0. (8.6)

Here we have 951 points from a two-dimensional manifold in R20 that is known to have
an embedding into R3. So, we want to solve (8.2) where p ∈ G(20, 3). (The 2n + 1 in
Whitney’s theorem is an upper bound on the possible embedding dimension.) Let

ε = min
σi∈Σ

‖p̂T σi‖2, (8.7)

where p̂ ∈ G(20, 3) is the solution to (8.2). Then a larger value of ε indicates a
better projection of the data into a low-dimensional subspace of the original R20. The
method presented in [8] for finding p̂ resulted in ε = .01616. The method in [10],
using MATLAB R©’s quadprog to solve the quadratic programs rather than the
computationally intensive method in [6], gave ε = .02386. In contrast, the LTMADS
method resulted in ε = .03887 after 20 iterations. The initial p0 in the LTMADS
algorithm was taken to be the three left singular vectors that corresponded to the three
largest singular values of the 20-by-451725 matrix of unit-length secant vectors, where
we used either σj or σi when σj = −σi.

The LTMADS algorithm seems to be a significant improvement over previous
methods for finding the Whitney embedding of data sampled from a manifold. As
previously mentioned, this improvement is useful for finding an embedding that is
as close to isometric as possible. This is itself important because it introduces as
little distortion in the projected data as possible. Following the Whitney projection,
one can employ the semi-definite programming method in [10] to further improve
the embedding. An alternate method would be to run a numerical implementation of
Günther’s theorem [13, 14].
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9 LTMADS for constrained optimization problems

Using the LTMADS algorithms for constrained optimization was already considered in
[3]. Here, we will show how this can be done as an unconstrained minimization problem
using LTMADS over a Riemannian manifold M. The manifold M will enforce the
constraints of our original problem.

For the LTMADS algorithm, we will consider the following constrained optimiza-
tion problem:

min
x∈Rn

f(x) (9.1a)

subject to g(x) = 0. (9.1b)

We can convert any constrained optimization problem to this form by adding in slack
variables z to change any inequality constraints into equality constraints and, defining
the extended function

fe(x, z) =
{

f(x) if z ≥ 0
∞ otherwise .

Notice that fe(x, z) will implicitly enforce the condition z ≥ 0. Now, using the
Morse-Sard theorem, it is typically the case that the level set g(x) = 0 of the mapping
g : Rn → Rm is a regular Riemannian manifold M of dimension n −m embedded
in Rn [23]. Additionally, if M is closed, then it is also geodesically complete. By
using the LTMADS algorithm over this implicitly defined manifold, we are changing
the constrained optimization problem (9.1) into an unconstrained optimization problem
onM. The price to be paid for this is the expense of calculating the required geodesics
and parallel transports when we run the LTMADS algorithm on M.

Now, let us give the system of differential equations that needs to be solved for
calculating the geodesics on M [11], namely

ẍk = ẋT

[
m∑

i=1

[
−gT

xk

[
∇g(∇g)T

]−1
]i
∇2gi

]
ẋ (9.2a)

= ẋT Lk
xxẋ, (9.2b)

with the initial conditions given by the position vector x0, where g(x0) = 0, and the
tangent vector ẋ0. In (9.2a), xk is the kth component of x, gi is the ith component of
g(x) and, gxk is the partial derivative of g(x) with respect to xk. Setting Γk = −Lk

xx

gives us our Christoffel symbols. So (9.2b) can be rewritten in the standard notation

ẍk = −Γk
ij ẋ

iẋj . (9.3)

Along the geodesic x(τ) calculated in (9.3), we can parallel transport a tangent vector
ω ∈ Tx0M via the equation

ω̇k = −Γk
ij ẋ

iωj . (9.4)

22



From (9.3) and (9.4), we see that many systems of nonlinear ODEs would need to
be solved in order to do the operations required by the LTMADS on M, at least for
the poll step. The search step could potentially be done by using approximations to
the systems of nonlinear ODEs. If a potential new candidate solution is located with
the approximations, we could then solve the exact equations to see if it should become
our new candidate solution. However, we are still limited by the fact that at least the
poll step would require us to solve (9.3) and (9.4). This may not be a fatal limitation,
however, as the reduced gradient methods need to do a similar procedure in order to
remain on the level set g(x) = 0 [4, 11].

The Runge-Kutta algorithm can be used to solve (9.3) and (9.4) [29]. These solution
methods are given by Algorithm 9.1 and Algorithm 9.2, respectively. At each step of
Algorithm 9.1, we need to make sure that xα satisfies g(xα) = 0 and, that yα lies in
the tangent plane Txα

M. Also, since we only need to parallel transport the G matrix
from the LTMADS algorithm, in Algorithm 9.2 we need to make sure that the parallel
transported Gα = G(αh) matrix satisfies GT

αGα = I and, that the elements of G all
lie in the tangent plane Txα

M. Any errors need to be corrected for at each step of the
algorithms. This can be done by projecting xα back onto M and, then projecting yα

onto the resulting tangent plane. Additionally, the elements of G can be projected onto
Txα

M and, then orthonormalized.

Algorithm 9.1 Geodesic Equation Solver [29]
Fix an integer m and, let the step size be given by h = T/m. Let α = 1, . . . ,m,
xα = x(αh),

yα = ẋα,

Xα = [xα yα] and,

F (Xα) =
[
yα − Γk

ij(xα)yi
αyj

α

]
.

Then the Runge-Kutta algorithm is given by

X0 = [x0 ẋ0] , Xα+1 = Xα +
h

6
(k1 + 2k2 + 2k3 + k4) ,

k1 = F (Xα), k2 = F (Xα + k1/2),
k3 = F (Xα + k2/2) and k4 = F (Xα + k3).

Now let us consider the linear optimization problem on an n-dimensional solid
hypersphere from [3]:

min
x∈Rn

1T x (9.5a)

subject to xT x ≤ 3n. (9.5b)

By adding in the slack variable z and defining the extended function as in (9.2), we can
convert (9.5) into the form in (9.1). Actually, we could just take (9.5b) as already giving
us an n-dimensional manifold in Rn, which itself provides the (global) coordinates for
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Algorithm 9.2 Parallel Transport Equation Solver
Fix an integer m and, let the step size be given by h = T/m. Let xα = x(αh)
and ẋα = ẋ(αh), α = 1, . . . ,m, be the solutions from Algorithm 9.1. Finally, let
ωα = ω(αh) and H(ωα) = −Γk

ij(xα)ẋi
αωj

α. Then the Runge-Kutta algorithm is
given by

ω0 = ω(0), ωα+1 = ωα +
h

6
(k1 + 2k2 + 2k3 + k4) ,

k1 = H(ωα), k2 = H(ωα + k1/2),
k3 = H(ωα + k2/2) and k4 = H(ωα + k3).

M. Then this would reduce to the standard LTMADS algorithm. Instead of using
either of these cases, we will simply replace the inequality in (9.5b) with an equality to
have:

min
x∈Rn

1T x (9.6a)

subject to xT x = 3n. (9.6b)

Then we will be searching over the n-dimensional hypersphere. This is equivalent to
the original problem since the solution to (9.5) is given by x = −

√
3 1, where the

optimal value is −
√

3 n.

The equations for the Christoffel symbols associated with (9.6b) are

Γk
ij =

xk

3n
I. (9.7)

In Algorithm 9.1, at each step we renormalized xα so that xT
αxα = 3n and, projected

yα onto the tangent plane using the projection operator Pα = (I − 1/(3n)xαxT
α). In

Algorithm 9.2, the parallel transported G matrix was projected using Pα and, orthonor-
malized by setting all of the resulting singular values to unity at each step. A value of
m = 100 was used in both Algorithms 9.1 and 9.2. A random point on the hypersphere
was used as our x0 and, we let the initial G be given by the SVD

P0 = [G u]
[

S 0
0T 0

]
V T . (9.8)

For this example we used the maximal positive basis LTMADS algorithm. The
only difference from the minimal basis LTMADS algorithm in section 6 is that we let
Dk = [B − B] in (6.4) and, take ∆p

k =
√

∆m
k . The dynamic search procedure was

still used. We terminated the generalized LTMADS algorithm whenever ∆p
k ≤ 10−12

or, when k > 600n. The algorithm was run five times each for the dimensions
n = 5, 10, 20 and 50. The results are shown in Figure 1. For n = 5, 10 and 20, the
generalized LTMADS algorithm converged to the global solution within the allowed
number of function evaluations. For n = 50, the number of function evaluations was
exceeded, although the algorithm nearly converged. If we had used ∆p

k ≤ 10−9, then
the algorithm would have converged for all of the values of n.
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Figure 1: The objective function value versus number of function evaluations for
problem (9.6) using the LTMADS algorithm.

10 A frame based method and convergence analysis

We would not be able to employ the techniques in [3] to prove convergence of the
algorithm in section 7 directly because of the parallel transportation of G. Indeed,
parallel transportation makes the generalized LTMADS algorithm much closer to the
frame based method in [9, 25] than to the original LTMADS algorithm in [3]. To
overcome this difficulty, we will modify our algorithm so that it becomes a frame based
method. The modification only requires a slight change in the update rules for ∆m

k and
∆p

k.

Now let Ok be the parallel transported G matrix at iteration k in the generalized
LTMADS algorithm. Then we have that

pk = Exppk−1
(∆m

k−1Ok−1Duk−1) (10.1)

for some uk−1 ∈ NnD . The problem is that parallel transportation is generally path
dependent, so we cannot say that pk = Expp0

(∆m
k−1Dũk−1) for some ũk−1 ∈ NnD ,

as was done in [3] where M = Rm. A consequence of the Hopf-Rinow-de Rham
theorem is that any two points on M can be connected by a geodesic [28], provided
M is geodesically complete. So we can parallel transport Ok from pk back to p0. Call

25



this Õk. However, unless M is flat, as Rn is, we will generally have Õk 6= G. The
fact that Õk 6= G is what causes the problems of using the techniques in [3] to prove
convergence.

Let us review the frame based method in [9]. A positive basis is a positive spanning
set with no proper subset that is also a positive spanning set, see 1 before (6.1). In the
LTMADS algorithm, the Dk are a positive basis. A frame is defined as

Φk = Φ(xk, Vk, hk)
= {xk + hkv |v ∈ Vk } , (10.2)

where xk is the central point, Vk is a positive basis and, hk > 0 is the frame size. A
minimal frame is one for which

f(y) ≥ f(xk), for all y ∈ Φk. (10.3)

Then xk is called a minimal point. A quasi-minimal frame is one for which, given an
ε > 0,

f(y) + ε ≥ f(xk), for all y ∈ Φk. (10.4)

We call xk a quasi-minimal point. With these definitions, a general frame based method
is given in Algorithm 10.1. Note that Nk and Hk in Algorithm 10.1 are fixed until we
find a quasi-minimal point xk and, perform Step 6.

Algorithm 10.1 Frame Based Method [9]

1. Initialize k = 0. Let x0 ∈ Rm be our initial point and, choose β > 0.

2. Choose Nk > 0 and Hk > 0.

3. Construct Φk by any means, where hk > Hk.

4. Do any finite search process. Letxt be a point from the set Ωk = Sk∪{pk}∪Φk,
where Sk is the set of points from the finite search process, such that

(a) f(xt) < fk −Nk(hk)1+β or,

(b) xt is the best point in Ωk.

Let k = k + 1.

5. If f(xt) < fk −Nk(hk)1+β , let xk+1 = xt and, go to Step 3.

6. Otherwise, perform any finite process. Let xk+1 be the best known point.

7. If the stopping criteria are satisfied stop. Otherwise, go to Step 2.

Because of the difficulties introduced by parallel transport, we will use Algo-
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rithm 10.2 to prove our convergence results. Here

Φk = Φ(pk, Dk,∆m
k )

=
{
Exppk

(∆m
k di) |di ∈ Dk

}
. (10.5)

The modification of the LTMADS algorithm is very simple. In Step 4, we will update
∆m

k and ∆p
k as we did in section 6, by ‘expanding’ the mesh, unless ∆m

k = 1.
However, in Step 5, we will always refine the mesh. Other update procedures are
possible [9, Theorem 3]. Note that our modification does not prevent the mesh from
‘expanding’. Theorem 10.3 below tells us that the modification does, however, build
into the algorithm the fact that the mesh will become infinitely fine as the algorithm
proceeds, i.e., limk→∞∆m

k = 0. This is the essential difference between the frame
based method in Algorithm 10.2 and the LTMADS algorithm in section 7. Also, the
assignment of zn is not required when actually running Algorithm 10.2. We only need
the zn for the statements of Theorems 10.3 and 10.4.

Algorithm 10.2 Frame Based Method for Riemannian Manifolds [3, 9]

1. Initialize n = k = 0, ∆m
0 and ∆p

0. Let p0 ∈ M be our initial point and,
choose β, δ > 0.

2. Construct Dk.

3. Do the search and/or poll step. Let pt be a point from the set Ωk = {sk} ∪
{pk} ∪ Φk such that

(a) f(pt) < fk − δ(∆m
k )1+β or,

(b) pt is the best point in Ωk.

4. If f(pt) < fk − δ(∆m
k )1+β , let k = k + 1 and, pk+1 = pt. Update ∆m

k and
∆p

k and, go to Step 2.

5. Otherwise, set zn = pk. Let n = n + 1, k = k + 1 and

pk+1 = argmin {f(pk), f(pt)} .

Update ∆m
k and ∆p

k by refining the mesh.

6. If the stopping criteria are satisfied return pk. Otherwise, go to Step 2.

Now we can give our convergence result for the frame based method in Algo-
rithm 10.2. More general frame based methods can be used without modifying the
convergence results. The following assumptions will be made:

1. M is geodesically complete.

2. The algorithm remains in a compact region U of M.
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3. The function f : M → R is C1 and, an initial point p0 ∈ M is given. The
gradient ∇f is Lipschitz in U .

Assumption 1 was made in section 7 and, is for simplicity only, while assumptions 2 and
3 are as in [9]. All of the results in [9] carry over without modification to Algorithm 10.2
on Riemannian manifolds. The first result is

Theorem 10.3 [9]

The sequence of quasi-minimal points {zn} is infinite and limk→∞∆m
k = 0.

Using Theorem 10.3, the convergence result for the frame based method is

Theorem 10.4 [9]

Every cluster point of the sequence of quasi-minimal points {zn} is a stationary point
of f(q).

Proving any convergence results for the LTMADS algorithm in section 7 seems to be
a much more challenging task. Again, this is because of the parallel transportation of
tangent vectors that needs to be performed.

For an example of the frame based method, we will redo the hypersphere problem
given by (9.6). We set β = δ = 10−8. Everything else was done exactly as it was for
the LTMADS example. The results for the frame based method were the same as in the
LTMADS example, see Figure 2.

11 Discussion

We’ve demonstrated that the Nelder-Mead simplex algorithm can be generalized to
Riemannian manifolds. The main limitations are that the manifold in question has
tractable formulas for the Exp and Log mappings. Many manifolds met in practice will
have such formulas, two of which we examined in detail: SO(n) and G(n, k). The
algorithm was shown to successfully converge on our test cases for SO(n) and G(n, k).
These examples were chosen to demonstrate that the algorithm can be practically
implemented and, because the true global solutions to the problems are known. The
algorithm would really be of more practical use when the function to be minimized is
non-differentiable or, maybe even non-continuous or noisy [21].

Regarding our restart procedure in subsection 5.1. The main difficulty, as previously
stated, was that the algorithm could become ‘stuck’ in the region of the initial simplex
simply because the simplex was constructed disadvantageously, not because the function
had a local minimum there. A related problem is examined in [21]. Of course, our
method for avoiding this problem would not necessarily be practical unless one already
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Figure 2: The objective function value versus number of function evaluations for
problem (9.6) using the frame based method.

knew, or could guess, what the minimal value of the objective function was a priori.
Other, more general methods for avoiding this situation can be imagined [24, 26].

The LTMADS algorithm has a more attractive generalization to Riemannian mani-
folds than the Nelder-Mead algorithm does. The reason for this is that the computations
one needs to do in order to run the algorithm (finding geodesics with initial conditions
and, parallel transportation) are relatively easy, at least in comparison to the compu-
tations needed for the Nelder-Mead algorithm’s generalization. Also, LTMADS has
convergence results [1, 3], something the Nelder-Mead algorithm generally lacks [18].
Whether the generalized LTMADS algorithm in section 7 also has some convergence
properties still needs to be shown. We were able to give a convergence result for a
related frame based method presented in section 10.
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