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Image Reconstruction

Image Reconstruction
DDMA

Image reconstruction can take many forms:

I denoising
I deblurring
I inpainting
I Abel inversion

Each of these is an ill-posed inverse problem.
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Image Reconstruction

Regularization
DDMA

We approach these problems variationally, and deal with the
ill-posedness with regularization.

Given image data f , find reconstruction u as minimizer of:∫ (
penalty term

)
+ (parameter)

∫ (
data-fidelity term

)
∫

R(u) + λ

∫
DF (P (u), f).
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Image Reconstruction

Penalty term examples
DDMA

Gaussian smoothing:∫
|∇u|2 + λ

∫
|u − f |2

(blurs object edges)
Total-variation regularization:∫

|∇u| + λ

∫
|u − f |2

(preserves edges, but shortens them)
Nonconvex regularization:∫

|∇u|p + λ

∫
|u − f |2, 0 < p < 1

(preserves most object geometries)
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Image Reconstruction

Examples
DDMA

noisy p = 2 p = 1

p = 3/4 p = 1/2 p = 1/4

Slide 6 of 17



Image Reconstruction

Examples
DDMA

noisy p = 2 p = 1
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Image Reconstruction

Fixed-point algorithm
DDMA

Euler-Lagrange equation:

0 = −∇ ·
(
|∇u|p−2∇u

)
+ λ(u − f).

“Lag” the nonlinear portion to get linear system:

0 = −∇ ·
(
|∇un|p−2∇un+1

)
+ λ(un+1 − f).

Converges fast!
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The magic of compressed sensing

Sparse tomography
DDMA

Suppose we want to reconstruct an
image from samples of its Fourier
transform. How many samples do
we need?

Shepp-Logan phantom

Suppose we have less than
4% of the Fourier transform.
Is that enough?

Ω
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The magic of compressed sensing

Nonconvexity again
DDMA

Yes, using nonconvex minimization:

min
u

‖∇u‖p, subject to û|Ω = f̂ |Ω.

With p = 1, solution is u = f given 18 projections ( |Ω|
|f | = 6.9%).

With p = 1/2, 10 projections suffice ( |Ω|
|f | = 3.8%).

backprojection, 18 views p = 1, 18 views p = 1, 10 views p = 1
2

, 10 views

Slide 10 of 17



The magic of compressed sensing

Compressed sensing
DDMA

Usual approach to data acquisition and compression:
I acquire the data (all of it)
I compute a sparse representation
I throw away the original data

Problems:
I data may be difficult or expensive to acquire
I dataset may too large to deal with easily

An obvious better way would be to directly acquire a sparse
representation, compressed sensing.
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The magic of compressed sensing

Random projections
DDMA

A general approach is to measure random projections: if the rows of
a matrix Φ are M i.i.d. Gaussian vectors, then the solution to

min
u

‖u‖p, subject to Φu = Φf,

is, for p = 1:
I exactly f (with overwhelming probability) if f is K-sparse and

M ≥ CK log N ;
I nearly f if f is nearly K-sparse (i.e., K-compressible) and

M ≥ CK log N , even if the measurements Φf are noisy

For p < 1, we find that fewer measurements are needed to produce
the same results.
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The magic of compressed sensing

The geometry of `p

DDMA

Why CS works:

Φu = Φf

f

p = 2

Φu = Φf

f

p = 1

Why p < 1 is better:

Φu = Φf

f

p = 1

Φu = Φf

f

p < 1
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The magic of compressed sensing

Error correction
DDMA

Let A be a random Gaussian matrix. Can we recover the “plaintext”
f if the “ciphertext” Af is corrupted by many, large errors?

If y = Af + e, we minimize ‖y − Af̃‖p. If e is sparse enough,
then the minimizer f∗ will be exactly f .

Given random B whose kernel is the range of A, the problem is
equivalent to minimizing ‖u‖p, subject to Bu = Be.
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The magic of compressed sensing

3-D tomography
DDMA

Non-oriented ellipsoid

Six radiographic views suffice for exact reconstruction with p = 1,
three with p = 1/2.
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The magic of compressed sensing

3-D Tomography
DDMA

Remove 1% of the voxels, randomly. Four views allow an exact
reconstruction of the depleted ellipsoid, to identify defects precisely.

For objects with piecewise-constant density, far less data is needed
than for traditional CT methods.
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Conclusions

Conclusions
DDMA

I Nonconvex regularization in image reconstruction improves
geometry preservation.

I We have a fast algorithm to do this.
I Compressed sensing is a powerful way to obtain sparse

representations from limited data, even more limited in the
nonconvex case.

I Current algorithms for nonconvex CS are feasible but not fast.
I The best applications are yet to come.

Slide 17 of 17


	Image Reconstruction
	Regularization
	Examples
	Algorithm

	The magic of compressed sensing
	Sparse tomography
	Compressed sensing
	Error correction
	3-D tomography

	Conclusions

