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Image Reconstruction

Image Reconstruction

Image reconstruction can take many forms:

» denoising
» deblurring
» inpainting
» Abel inversion

Each of these is an ill-posed inverse problem.
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Image Reconstruction

Regularization

We approach these problems variationally, and deal with the
ill-posedness with regularization.

Given image data f, find reconstruction « as minimizer of:

/(penalty term)  + (parameter) /(data—fidelity term)
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Image Reconstruction

Penalty term examples

Gaussian smoothing:
J1vul+x [ lu=sp

Total-variation regularization:

[1vul+x [1u- g

(preserves edges, but shortens them)

(blurs object edges)

Nonconvex regularization:
J1vur+a [lu- s 0<p<1
(preserves most object geometries)
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Image Reconstruction

Examples

p=3/4
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Image Reconstruction

Examples

p=3/4
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Image Reconstruction

Fixed-point algorithm

Euler-Lagrange equation:
0=—-V-.(|VuP2Vu) + A(u — f).
“Lag” the nonlinear portion to get linear system:
0=—V-(|VunP2Vupt1) + A(tnt1 — f).

Converges fast!
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The magic of compressed sensing

Sparse tomography

Suppose we want to reconstruct an

image from samples of its Fourier ~ Suppose we have less than
transform. How many samples do 4% of the Fourier transform.
we need? Is that enough?

Shepp-Logan phantom Q
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The magic of compressed sensing

Nonconvexity again

Yes, using nonconvex minimization:
min || Vul|,, subjectto i|g = f|a-
u

With p = 1, solution is w = f given 18 projections (% = 6.9%).

With p = 1/2, 10 projections suffice (% = 3.8%).

backprojection, 18views p = 1, 18 views p =1, 10views p = %, 10 views
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The magic of compressed sensing

Compressed sensing

Usual approach to data acquisition and compression:
» acquire the data (all of it)
» compute a sparse representation
» throw away the original data

Problems:
» data may be difficult or expensive to acquire
» dataset may too large to deal with easily

An obvious better way would be to directly acquire a sparse
representation, compressed sensing.
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The magic of compressed sensing

Random projections

A general approach is to measure random projections: if the rows of
a matrix ® are M i.i.d. Gaussian vectors, then the solution to

min ||ul|p, subjectto Pu = @ f,
u

is, forp = 1:
» exactly f (with overwhelming probability) if f is K-sparse and
M > CKlog N;
» nearly f if f is nearly K-sparse (i.e., K-compressible) and
M > CK log N, even if the measurements ® f are noisy

For p < 1, we find that fewer measurements are needed to produce
the same results.
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The geometry of ¢

Why CS works:
p=2
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The magic of compressed sensing

Why p < 1 is better:

Pu=>af
f
p:
Pu=df
f
p<l1
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The magic of compressed sensing

Error correction

Let A be a random Gaussian matrix. Can we recover the “plaintext”
f if the “ciphertext” A f is corrupted by many, large errors?

lf y = Af + e, we minimize ||y — Af||,. If e is sparse enough,
then the minimizer f* will be exactly f.

Given random B whose kernel is the range of A, the problem is
equivalent to minimizing ||u||», subject to Bu = Be.
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The magic of compressed sensing

3-D tomography

Non-oriented ellipsoid

Six radiographic views suffice for exact reconstruction with p = 1,
three with p = 1/2.
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The magic of compressed sensing

3-D Tomography

Remove 1% of the voxels, randomly. Four views allow an exact
reconstruction of the depleted ellipsoid, to identify defects precisely.

For objects with piecewise-constant density, far less data is needed
than for traditional CT methods.
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Conclusions

Conclusions

» Nonconvex regularization in image reconstruction improves
geometry preservation.

» We have a fast algorithm to do this.

» Compressed sensing is a powerful way to obtain sparse
representations from limited data, even more limited in the
nonconvex case.

» Current algorithms for nonconvex CS are feasible but not fast.
» The best applications are yet to come.
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