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Abstract

Researchers in many fields often need to quantify the similarity between images
using metrics that measure qualities of interest in a robust quantitative manner. We
present here the concept of image dimension reduction through characteristic shape se-
quences. We formulate the problem as a nonlinear optimization program and demon-
strate the solution on a test problem of extracting maximal area ellipses from two-
dimensional image data. To solve the problem numerically, we augment the class of
mesh adaptive direct search (MADS) algorithms with a filter, so as to allow infeasible
starting points and to achieve better local solutions. Results here show that the MADS
filter algorithm is successful in the test problem of finding good characteristic ellipse
solutions from simple but noisy images.

Key words: Optimization, mesh adaptive direct search algorithms (MADS),
filter methods, nonsmooth optimization, image metrics

1 Introduction

In this paper we present a method for property preserving dimension reduction in images
that can be used to construct metrics for quantifying similarity between two images in a
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high-dimensional space. This should not be confused with the related concept of determin-
ing image measure properties, which is a function of only one image. Examples of image
metrics include Lp distances, correlation functions, and image warping distances. The latter
capitalizes on image registration techniques common in medical imaging applications [20].
Image metrics are also essential for data retrieval applications [21].

The most useful and versatile image comparison methods will share significant proper-
ties. A key idea is that a metric must quantitatively measure qualities of interest. Equally
important is that a metric must ignore image differences that do not matter in the opinion
of an expert. One such difference is noise, a common and understandable theme. However,
robustness in the presence of non-noise features, such as distortions, occlusions, and missing
data, is also important. Metrics are especially useful if they are automated and rely as little
as possible on expert intervention.

Our consideration is the characterization of an image through extraction of geometric
properties of image intensity level sets and a subsequent metric comparison. The problem
that inspired our task is parameter estimation and hydrodynamic code validation studies
using fluid-flow experimental data. The essential question is: How well does a given choice of
hydrodynamic parameters and code implementation predict what is recorded in experimental
images? The related question is: Can we define a metric in the space of images that can
help us make better parameter choices and measure the quality of the simulation code?
Experimental fluid images are typically characterized by an evolving object or region of
interest which may have a simple geometry such as a wavefront, or a more complex character
such as the onset of turbulent flow. In either case we can expect to capitalize on geometric
property extraction. For other methods that focus on geometric object properties, see [21].

In this paper, we consider a method of characteristic shape sequences as a reduced di-
mension representation of images. The idea is to optimally map each intensity level set of the
image onto a parameterized family of shapes. If the shape family is characteristic of image
features of interest, then the shape parameter sequences define a low-dimensional represen-
tation of the original image. Image similarity can then be measured by sequence similarity
metrics. This simple idea may be useful for certain classes of fluid dynamics experiments and
medical imaging applications for which characteristic shapes can be of primary importance,
background details are relatively simple, and level sets are not topologically complicated.

The concept of metric comparisons on reduced dimension measures is not new. The
idea is to use an appropriate mapping from the high-dimensional image space to a low-
dimensional measure space that preserves, as much as possible, the image qualities of interest,
so that metrics can then be applied to the reduced image data. Recent applications include
speech summarization [13], hyperspectral analysis [15], and experimental design [10]. There
are two good reasons for this approach. First, it is possible, in principle, to formulate a
property-preserving mapping to a reduced dimension space [9, 14, 16]. Second, we can take
advantage of existing sequence similarity algorithms for metric comparison (see [24] and
included references).
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As a test case, we consider the sequence of maximal area ellipses interior to image level
sets. Each ellipse is defined by five parameters in the image space, and each optimal el-
lipse is computed by solving a constrained nonlinear optimization problem. Robustness of
the solution to noise and experimental uncertainty is enforced by allowing the ellipses to
contain a specified small percentage of pixels that lie outside the specified image level set.
The optimization problem is solved numerically by applying a mesh adaptive direct search
(MADS) algorithm [6] with a filter [5]. The filter allows intermediate solutions that violate
constraints in order to provide a more robust global search of the parameter space.

The paper is outlined as follows. In Section 2 we describe and formulate the problem in
detail. In Section 3 we introduce a hybrid mesh adaptive direct search filter (filter-MADS)
algorithm. Computational results obtained by the algorithm are presented and analyzed in
Section 4, followed by some concluding remarks in Section 5.

2 Problem Formulation

In formalizing the mathematical description of the problem, we begin with a pixilated rect-
angular image Π = {zij = z(xi, yj) : i = 1, 2, . . . ,M, j = 1, 2, . . . , N}, where {(xi, yj) :
i = 1, 2, . . . ,M, j = 1, 2, . . . , N} ⊂ R2 are the coordinates of the pixels and z = z(x, y)
is a real-valued function that measures intensity at location (x, y). An example is given
in Figure 1, where intensity values are differentiated by color. Without loss of generality,

Figure 1: Test Image for the maximal area ellipse problem

we assume that the image lies in the first quadrant of a rectangular coordinate system and
that the coordinate (x1, y1) coincides with the origin. Thus, for each pixel (xi, yj) ∈ Π,
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i = 1, 2, . . . ,M, j = 1, 2, . . . , N , the associated pixel indices (i, j) can be determined by
dividing xi and yj by the pixel width pw and height ph, respectively.

An ellipse E = E(xc, yc, a, b, θ) ⊂ R2 can be represented by five variables: the location of
its center (xc, yc) ∈ R2, the lengths of its axes a ≥ 0 and b ≥ 0 (measured from the center),
and the angle of its rotation θ ∈ [0, π

2 ], measured counterclockwise from the positive x-axis.
Its area is given by A = πab.

The objective is to find the maximum area ellipse, subject to reasonable bound constraints
on each variable, for which a specified percentage ρ ∈ [0, 100] of the z-values interior to the
ellipse meet a specified intensity threshold z0 and for which a specified ρ̄ ∈ [0, 100] percent
of the z-values on the ellipse boundary meet the threshold z0. Specifically, the optimization
problem can be formulated by

max A = πab

subject to z(x, y) ≥ z0 for ρ% of (x, y) ∈ Π ∩ E(xc, yc, a, b, θ)
z(x, y) ≥ z0 for ρ̄% of (x, y) ∈ ∂E(xc, yc, a, b, θ)

pw ≤ xc ≤ xmax

ph ≤ yc ≤ ymax

0 ≤ a ≤ 1
2 max{xmax, ymax}

0 ≤ b ≤ 1
2 max{xmax, ymax}

0 ≤ θ ≤ π
2 ,

(1)

where xmax = Mpw and ymax = Nph. Since no data exists for a point lying outside the
image boundary (defined by the bound constraints in (1)), objective function values there
are assumed to be infinite. This is not a problem for any of the algorithms used here,
provided that the initial point satisfies the bound constraints.

3 Algorithm

3.1 Mesh Adaptive Direct Search (MADS)

The problem given in (1) is not solvable by traditional gradient-based methods because no
derivative information for the nonlinear constraint functions is available. Thus we turn to
derivative-free methods, and in particular, the class of mesh adaptive direct search (MADS)
algorithms. MADS is an extension of the class of generalized pattern search (GPS) methods
[17, 18, 23] to general nonlinear programming (NLP) problems that overcomes limitations
of GPS when dealing with nonlinear constraints and nonsmoothness.

Lewis and Torczon [19] extended GPS to nonlinear constraints by applying GPS to an
augmented Lagrangian subproblem based on the method proposed in [7]. Their approach
ensures convergence for twice continuously differentiable objectives and constraints to a KKT
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point. This is not a realistic assumption for the class of problems considered in this paper,
and, in practice, the augmented Lagrangian approach may suffer from many of the problems
associated with penalty function methods, such as the effective choices of penalty parameters
and Lagrange multipliers.

Audet and Dennis [5] introduced a GPS filter method (filter-GPS), in which new iterates
are generated whenever simple decrease in the objective or an aggregate constraint violation
function is achieved. Filter methods were first introduced by Fletcher and Leyffer [12] as a
way to globalize sequential linear programming (SLP) and sequential quadratic programming
(SQP) without using a penalty function. The Audet-Dennis GPS filter approach avoids the
pitfalls of penalty parameters, but its convergence to standard first-order stationary points
is not guaranteed [5] due to GPS limitations.

Because of the weaknesses inherent to filter-GPS, Audet and Dennis [6] more recently
introduced the class of MADS algorithms. Instead of limiting local exploration to a finite
number of directions (as GPS does), MADS systematically generates an asymptotically dense
set of directions in the limit. Because of this property, convergence to both first-order [6]
and second-order [2] stationary points is guaranteed under reasonable assumptions without
the need for a filter but with the requirement that the starting point be feasible.

One primary advantage of MADS is that it can handle problems with general “Yes/No”
or set constraints. However, MADS requires the initial point to be feasible, while filter-GPS
does not. In this paper, we describe a filter-MADS algorithm, which we show in Section 4
to be more advantageous than MADS and filter-GPS in solving (1).

The target class of problems is of the form,

min
x∈X

f(x)

subject to C(x) ≤ 0,

where X ⊂ Rn, f : Rn → R and C = (C1, C2, . . . , Cm) : Rn → Rm. When using filter-GPS,
we must assume that the set X is a linearly constrained region; otherwise, convergence to
stationary points is not guaranteed. However, no such restriction is needed for MADS. The
algorithms described here are actually applied, not to the function f , but to the barrier
function fX = f + ψX , where ψX is an indicator function defined as zero inside X and +∞
otherwise. Convergence of the algorithm is based on the smoothness properties of f , not fX .

MADS is a class of algorithms that generates a sequence of iterates with nonincreasing
objective function values. Associated with this sequence is a set of nD directions, D ⊂ Rn,
that positively span Rn; i.e., any vector in Rn can be represented as a nonnegative linear
combination of vectors in D. Furthermore, each direction dj ∈ D, j = 1, 2, . . . , nD, must be
constructed such that dj = Gzj, where G ∈ Rn×n is a fixed nonsingular generating matrix
and zj ∈ Zn is an integer vector. For convenience, the set D is also viewed as a real n× nD

matrix whose columns are the elements of the set.

At each iteration k, points are evaluated on a mesh constructed using vectors in D in an
attempt to find a point with a function value lower than any previously evaluated points,
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which we term an improved mesh point. The current mesh is defined as

Mk =
⋃

x∈Sk

{x + ∆m
k Dz : z ∈ NnD},

where Sk is the set of points where the objective function f had already been evaluated
by the start of iteration k (S0 is the set of initial points), and ∆k is the current mesh size
parameter.

Each iteration of MADS has two main steps: an optional search and a local poll. In
the search step, any finite number of mesh points (including none) are evaluated. The
strategy for picking such points is left entirely to the user. Common choices are discussed in
[4] or [5], for example.

If the search fails to find an improved mesh point, then the more rigidly defined poll
step is invoked. In this step, a subset of mesh points near the incumbent are evaluated,
where proximity is based on the poll size parameter ∆p

k. This set of trial points is called
a frame. Less general than the frames of Coope and Price [8], the MADS frame uses the
current incumbent solution xk (the frame center) and the poll and mesh size parameters,
∆p

k > 0 and ∆m
k > 0, respectively, and a positive spanning set of nDk

directions Dk ⊂ D.
The MADS frame at iteration k is more formally defined [6] to be the set:

Pk = {xk + ∆m
k d : d ∈ Dk} ⊂ Mk,

where Dk is a positive spanning set such that 0 /∈ Dk, and for each d ∈ Dk,

• d can be written as a nonnegative integer combination of the directions in D : d = Du
for some vector u ∈ NnDk that may depend on the iteration number k;

• the distance from the frame center xk to a frame point xk + ∆m
k d ∈ Pk is bounded by

a constant times the poll size parameter: ∆m
k ‖d‖ ≤ ∆p

k max{‖d′‖ : d′ ∈ D};

• limits (as defined in Coope and Price [8]) of the normalized sets Dk are positive span-
ning sets.

If either the search or poll step is successful in finding an improved mesh point, then
that point becomes the incumbent, and the mesh is retained or coarsened. If both the
search and poll steps fail to find an improved mesh point, then the current iterate is
declared a mesh local optimizer, the frame is called a minimal frame, and the frame center
xk is a minimal frame center. In this case, the current iterate xk+1 = xk is retained, and the
mesh is refined. Coarsening and refining of the mesh are performed according to the rule,

∆m
k+1 = τwk∆m

k (2)

where wk ∈
{

{0, 1, . . . , w+} if an improved mesh point is found
{−1,−2, . . . , w−} otherwise.

(3)
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where τ > 1 is rational, and w− ≤ −1 and w+ ≥ 0 are integers. The poll size parameter is
also updated such that ∆m

k ≤ ∆p
k for all k, but also such that

lim
k∈K

∆m
k = 0 if and only if lim

k∈K
∆p

k = 0, (4)

where K denotes any subsequence of mesh local optimizers. Under this construction, GPS
is the specific implementation of MADS for which ∆m

k = ∆p
k for all k.

Figures 2 and 3 give examples of a GPS and MADS frame, respectively [6]. As shown
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Figure 2: Example of GPS frames Pk = {xk + ∆m
k d : d ∈ Dk} = {p1, p2, p3} for different
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Figure 3: Example of MADS frames Pk = {xk + ∆m
k d : d ∈ Dk} = {p1, p2, p3} for different

values of ∆m
k and ∆p

k. In all three figures, the mesh Mk is the intersection of all lines.



November 22, 2006 8

in Figure 3, the number points eligible to be chosen for a MADS poll set grows unbounded
as the iteration sequence progresses. In fact, the total of all poll directions can be chosen
to become asymptotically dense. A specific implementation of MADS was devised in [6] in
which the sets Dk are limited in size but chosen randomly at each iteration. This preserves
the denseness of poll directions, but does so only with probability one.

3.2 Filters

Filter-based algorithms attempt to minimize both the objective function f and a nonnegative
aggregate constraint violation function h, where h satisfies the condition that h(x) ≥ 0 with
h(x) = 0 if and only if x is feasible. Consistent with [5], we specifically choose

h(x) = ‖C(x)+‖2
2,

where C(x)+ is the vector of constraint violations at x; i.e., for i = 1, 2, . . . ,m, Ci(x)+ =
Ci(x) if Ci(x) > 0; otherwise, Ci(x)+ = 0. This choice of h inherits whatever smoothness
properties C possesses [5].

Also consistent with [5], we define a second constraint violation function, hX = h + ψX ,
where the indicator function ψX is defined exactly as before. Thus, for x /∈ X, hX(x) = ∞,
and the function h is not evaluated. Convergence properties with respect to h at the limit
point of the algorithm depend on the local smoothness of h and not of hX [5].

A filter is based on the idea of dominance, which is defined with respect to f and h
below [3]. A formal filter definition follows.

Definition 3.1 A point x ∈ Rn is said to dominate y ∈ Rn, written x ≺ y, if f(x) ≤ f(y)
and hX(x) ≤ hX(y) with either f(x) < f(y) or hX(x) < hX(y).

Definition 3.2 A filter F is a finite set of points in the domain of f and h such that no
pair of points x and y in the set have the relation x ≺ y.

Two additional restrictions are placed on the filter F . First, a bound hmax is set on
aggregate constraint violation so that each point y ∈ F satisfies hX(y) < hmax. Secondly, to
be consistent with [11, 12], only infeasible points are included in the filter, and feasible points
are tracked separately. Using these two restrictions, we include the following terminology
[3]:

Definition 3.3 A point x is said to be filtered by a filter F if any of the following properties
hold:

1. y . x for some y ∈ F ,
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A general MADS filter algorithm

1. Initialization: Let I0 be a set of initial evaluated points in X. Include in the
filter F0 all undominated points in I0. Set hmax > hX(x0) for some x0 ∈ F0. Let
∆0 > 0, and set D, G, τ , w− and w+ satisfy the requirements given above. Set the
iteration counter k ← 0.

2. Choose frame center pk ∈ {pF
k , pI

k} ⊂ X.

3. Search and poll step: Perform the search and possibly the poll steps (or
only part of them) until an unfiltered mesh point xk+1 ∈ Mk is found.

• Optional search: Evaluate fX and hX on a finite subset of trial points on
the mesh Mk.

• Local poll: Evaluate fX and hX on the frame Pk centered at pk.

4. Parameter update: Update ∆m
k+1 according to (2)–(3) and ∆p

k+1 so that (4) is
satisfied. Update filter Fk+1 for the new frame center.
Set k ← k + 1 and go back to Step 2.

Figure 4: A general MADS filter algorithm

2. hX(x) ≥ hmax,

3. hX(x) = 0 and f(x) ≥ fF , where fF = min{f(w) : w ∈ F , h(w) = 0}.

The point x is said to be unfiltered by F if it is not filtered by F .

Note that one consequence of this definition is that, if y ∈ F , then any other point x ∈ Rn

satisfying f(x) = f(y), h(x) = h(y) cannot be added to the filter.

3.3 The MADS Filter Algorithm

In adding the filter to the MADS algorithm, we change notation slightly. Instead of polling
around the current iterate xk, we poll around the frame center pk ∈ {pF

k , pI
k}, where pF

k ∈ X is
the best feasible point found so far (i.e., the feasible point with the lowest objective function
value), and pI

k ∈ X is the least infeasible point (i.e., the infeasible point with the lowest value
of h). If no feasible point has been found, then pk = pI

k is chosen. Note that, by construction,
both pF

k and pI
k, and thus pk, will always satisfy the constraints that define X. A successful

iteration is one that finds an unfiltered point is found, in which case, it is added to the filter.
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The filter-MADS algorithm is described in detail in Figure 4. Its convergence properties
are not presented here, but follow directly from those of the filter-GPS [5] and MADS [6]
algorithms.

4 Numerical Implementation

To evaluate the effectiveness of the filter-MADS algorithm on the maximal area ellipse
problem, we tested it, together with the filter-GPS and MADS algorithms, using the NO-
MADm [1] software package. The test image (with random noise already added) is the one
illustrated in Figure 1. It consists of a 256 by 260 matrix, where each entry corresponds
to the z-value of a pixel, ranging in value from −0.0637 to 1.0573. Each pixel has a height
of ph = 0.0125 and a width of pw = 0.01168. The z-values are interpreted as the discrete
pixel-center sampling of the unknown continuous image.

For the filter-GPS and filter-MADS algorithms, the domain X is defined by the five
bound constraints in (1), while the other two nonlinear constraints are treated by the filter.
For MADS, X is defined by all of the constraints. Recall that constraints that define X are
treated by the barrier approach, in which points lying outside of X are discarded without
being evaluated.

4.1 Initial Iterates

We developed two different methods of selecting the initial iterate. The algorithm is able to
use either one, or a combination of the two. In the first approach, we set the initial iterate
to be a modified version of the inscribed ellipse of the image. This ellipse, which usually
violates the first two nonlinear constraints in (1), is given by

E0 = E(xc, yc, a, b, θ) = E

(
1

2
xmax,

1

2
ymax,

1

2
xmax − 2pw,

1

2
ymax − 2ph, 0

)
. (5)

In the second approach, we compute local maxima of the signed distance function asso-
ciated the level set {(x, y) : z(x, y) ≥ z0}. The signed distance function is computed using
the fast marching method [22]. Each local maximizer then becomes the center of a circle
whose radius extends 90% of the distance to the boundary of the level set. Each circle is
then given an orientation so that the difference in intensity between the two diameter end-
points is maximal. A list of these potential initial iterates is compiled, and any circle that
significantly overlaps with another is removed from the list. The algorithm then evaluates
each ellipse from the list as an initial iterate.

The first approach often starts infeasible, but with an ellipse of large area. This often
leads to better solutions, but achieving feasibility can be a challenge, especially for high values
of z0. On the other hand, the second approach is more robust in finding a feasible point,
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since it begins with smaller ellipses, but it is also more likely to converge to a local solution.
By combining the two methods, a third approach is available, in which the algorithm begins
with the initial point E0 and then uses the second approach if the algorithm fails to find a
feasible iterate from E0.

4.2 Test Results

We solved the problem numerically using the two different initial points, as described in
Section 4.1. When using the filter, polling at each iteration was done around both the best
feasible point and the least infeasible point. Whenever either the MADS or filter-MADS
algorithm was used, 10 replications were performed to handle the inherent random factor.
Problem parameter values were set to z0 = 0.241, ρ = 95%, and ρ̄ = 75%. Termination of
the algorithm was set to occur when the mesh size parameter fell below 10−8.

For both tests, we compared the performance of three algorithms; namely, filter-GPS (us-
ing the standard standard 2n directions), MADS, and filter-MADS. In the case of MADS,
infeasible trial points were simply discarded. When using the MADS or filter-MADS algo-
rithm, we recorded the best result from the 10 replications along with appropriate averages.

Tables 1 and 2 provide results for feasible and infeasible starting points, respectively.

Table 1: Results when starting from a feasible point.

Evaluations Area xc yc a b θ
filter-GPS 1208 1.52018 1.3059 2.051 0.5763 0.8396 0.9132

MADS
best 403 1.58541 0.8581 2.334 0.689 0.7325 0.5741

average 426 1.44494
filter-MADS

best 3161 1.72286 0.9192 2.2875 0.6981 0.7856 0.5509
average 1987 1.54562

When starting from a feasible initial point, all three algorithms converged to a local mini-
mizer, with filter-MADS finding a better solution than MADS or filter-GPS. However, when
the infeasible initial point was used, there was a significant difference in results between
the three methods. Although filter-GPS was able to find a feasible ellipse, it was far from
optimal. This is not surprising because only two of the ten standard 2n directions used by
filter-GPS (increasing a or b) improve the objective function value, since the other three
variables, xc, yc, and θ, have no affect on the objective function value. In contrast, filter-
MADS showed significant improvement. The expanded set of search directions in MADS
allowed the algorithm to find a more eccentric ellipse (i.e., one with a higher eccentricity
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Table 2: Results when starting from an infeasible point, E0.

Evaluations Area xc yc a b θ
filter-GPS 757 1.24320 1.0186 2.3461 .7098 .5575 0

MADS
best 81 failed 1.5184 1.6 1.575 1.485 0

average 81 failed
filter-MADS

best 488 1.79746 1.2059 2.0375 0.575 0.995 0.5
average 561 1.13941

e =
√

1− b2/a2) to better fit the constraints. Without a filter, MADS did not move from
the infeasible initial point. Since MADS sets the objective function value of all infeasible
points to −∞ (for a maximization problem), it moves as soon as it finds a feasible point.
However, in this case, it did not find one. This is consistent with the theory, which requires
a feasible initial point to ensure convergence to a stationary point [6].

In Figure 5, three images displaying the level set of all z ≥ z0 are shown. Superimposed
over each image is the boundary (and axes) of the best ellipse found by the filter-GPS,
MADS, and filter-MADS algorithms, respectively, when starting from the infeasible point
E0.

Figure 5: Resulting ellipses starting from the infeasible point, E0: filter-GPS, MADS, and
filter-MADS, respectively

Once we were able to solve this problem for a particular value of z0, we constructed
shape sequences by computing optimal ellipses for a full range of z0 values. In particular,
we partitioned the range of z-values into 100 evenly spaced nodes, z̄i, i = 1, 2, . . . , 100, ran
10 replications of the filter-MADS algorithm for each node (i.e., setting z0 = z̄i in (1)), and
recorded the best and average optimal ellipses for each run. For these runs, we we used as
starting points both E0 and the initial points found using the signed distance function.
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Figure 6 shows a plot the optimal values of x, y, a, b and θ for each value of z0, and
Figure 7 shows the best and average optimal objective function values versus z0. The se-
quences in Figure 6 represent the characteristic signatures of the test image in the ellipse
representation. The plots do not include the few cases in which the algorithm failed to find
a feasible ellipse. In addition, other vector quantities, such as eccentricity, can be obtained
from the basic sequences.

The high-frequency variation in the ellipse signatures can be attributed to two sources.
First, and most significant, filter-MADS is finding a locally optimal solution for each z0 on
an objective function surface complicated by significant noise. Second, in the presence of
noise, the parameters will show a significant sensitivity to z0, even if the global solution is
attained for each value of z0.

The sequences of Figure 6 can be compared to identically obtained sequences on other
images as an image metric, but these ideas are beyond the scope of this paper.
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Figure 6: Evolution of the optimal ellipse as values of z0 increase

5 Conclusions

We have demonstrated a method for quantifying reduced-dimension measures on images
which can be used for further exploration as image comparison metrics. The maximal area
ellipse problem explored in this paper contains the essential features of this class of problems:
whole image characterization, low-dimensional characteristic property representation, and
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robustness to noise. Other potential interesting characteristic shapes include models of
bones, library templates for image classification, simple closed curves (rectangles, ellipses,
stars), and alphanumeric characters.

While filter-GPS and MADS are both appropriate methods for treating the general class
of problems, the hybrid filter-MADS approach achieves a better result, primarily due to the
superior convergence properties of MADS and the flexibility of filter methods in starting
from a good but infeasible point.

The filter-MADS solutions do show significant solution variability. This shortcoming can
be addressed, as it was in this study, by considering the best of several runs. Alternatively,
some image preprocessing to reduce noise signature is a reasonable analysis step.
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