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Abstract

We describe a set of serial and parallel C++ classes for the multiplication
of arbitrary-rank tensors with an arbitrary number of reductions. The classes
include multiplication functions and a reasonable set of manipulations and file
access functions. They also include functions to generate pieces of the tensors
on-the-fly. These functions use index transformations from characteristic matrices
and computable “core tensors” to achieve significant savings in communications
and storage. We test the routines on a series of rank-4 tensors and demonstrate
that the parallel algorithms can multiply large tensors with relatively low memory
and communication requirements. Numerical experiments up to 256 processors
indicate that they scale very well in several measurements.

1 Introduction

This paper outlines several algorithms for multiplying arbitrary-rank tensors with
an arbitrary number of reductions. We implement them through a set of C++
classes, some of which work in serial and others that use MPI for large-scale par-
allel machines. The classes provide a set of useful, general-purpose utilities for
manipulating large tensors. The following two subsections give some background
information about tensor manipulation and contrast the current approach with
other tensor multiplication software in the literature.

1.1 Mathematical background

Recall that a tensor is an extension of the concept of a linear operator to multilinear
algebra. The motivating application for the current project is in computational
chemistry [4, 12, 17, 18, 21], but tensors have many applications in disparate areas
such as fluid and solid mechanics, general relativity, and quantum mechanics [5,
16]. A full treatment of multilinear algebra and continuum mechanics is beyond
the scope of this paper, but we include a few definitions and examples below for
reference. Many texts on multi-linear algebra are available, for example [19].
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The most precise way to define tensors is to use ordered outer products over
multiple, generalized vector spaces. We assume the existence of standard bases in
this paper, however, so we do not keep track of basis transformations (except in
the explicit examples outlined below). In particular, the data structures described
below are insensitive to whether indices are covariant are contravariant, so the
reader may perceive of tensors only as multi-dimensional boxes of numbers with
an organizational structure.

The rank of the tensor is the number of dimensions in the box. A rank-1 tensor
is indistinguishable from a vector, and a rank-2 tensor is indistinguishable from a
matrix.

We represent these boxes using subscript index notation, so, for example, a
rank-3 tensor, u, with dimensions 3, 2, and 5 is written uijk, where i ∈ {1, 2, 3};
j ∈ {1, 2}; and k ∈ {1, 2, 3, 4, 5}. The convention is to use lower-case letters as
subscripts and corresponding upper-case letters as the range of that subscript with
starting index 1. In this example, we write {I, J, K} = {3, 2, 5}.

Tensors inherit most of the usual operations such as summation and scalar
multiplication from the field, which we assume to be the real numbers. The most
general operation between two tensors simply multiplies every pair of elements to
create a new tensor with a rank equal to the sum of the two original ranks. For
example, if uijk is a rank-3 tensor and vmn is a rank-2 tensor, then multiplying
them creates a rank-5, tensor, which we write

wijkmn = uijkvmn. (1)

If an expression contains one or more repeated indices, then it implies the Ein-
stein summation convention, which means that we sum over the repeated “dummy”
indices. Two repeated indices in Eqn. (1) would result in a rank-1 tensor, for ex-
ample,

wj = uijkvik =

Ni
X

i=1

Nk
X

k=1

uijkvmk. (2)

This is sometimes known as tensor contraction or reduction.
Many tensors have a simple representation with respect to one basis, but a

more complicated representation with respect to another. It is often much cheaper
to store the simpler version, plus some transformation rules, than it is to store the
tensor in several forms. Our software contains elements and functions that allow
us to calculate a k-index transformation. This means that a rank-k tensor, v, has
a rank-k “core tensor,” g, that is computable from analytic expressions, and a set
of k matrices called “characteristic matrices,” zi. The transformation provides any
element of the tensor using the formula,

vi1i2...ik
= z1

i1j1
z2

i2j2
· · · zk

ikjk
gj1j2...jk

. (3)

This transformation becomes very important for minimizing storage and commu-
nication costs in the parallel algorithm.

Here is where the motivating application becomes apparent. The k-index trans-
formation in computational chemistry represents a change in basis from an atomic-
orbital basis to a molecular-orbital basis, the so-called “AO-to-MO” transforma-
tion. For our purposes, however, it mostly serves to avoid the storage of large
tensors on disk.
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1.2 Computational background

The codes presented here are very generic. They can multiply two tensors of any
rank with any number of reductions. The only restriction is that if p is the number
of reductions, then the contracted indices be the last p indices of both tensors, as
in

wa1a2...amb1b2...bn = ua1a2...amc1c2...cpvb1b2...bnc1c2...cp . (4)

At a minimum, we would like to be able to multiply two rank-4 tensors with two
reductions, where both tensors potentially have very large dimensions.

The literature of recent decades contains many serial and parallel algorithms
for tensor manipulation [10, 15]. Probably the most sophisticated and complex
parallel version is the “Tensor Contraction Engine” (TCE) [1, 3, 6, 8, 9, 14]. This is
an intensive, collaborative project spread out among several locations, distributed
with the NWChem computational chemistry package [11].

The TCE is not a code suite per se. Rather, is it is an interpreter that generates
optimized FORTRAN code based on a user’s description of chemical reactions in a
high-level language. The actual algorithms used to perform tensor multiplication
may change depending on the size and structure of the multiplications, number of
processors, available memory, and other factors. Determining an optimal algorithm
based on these factors is a very complicated task and is an active area of research
[13, 14].

On the other end of the spectrum is a set of MATLAB classes described in [2].
These classes institute a different philosophy from the TCE in that they emphasizes
ease of use, flexibility, and visualization at the expense of speed. Moreover, the
MATLAB codes are strictly serial, except for internal use of multiple cores in the
commercial software itself. The primary advantage of a commercial product such
as MATLAB is that it allows for very fast prototyping and instant analysis of the
results.

The codes outlined in this paper do not attempt to emulate the TCE’s high-level
constructs, nor do they run under the MATLAB environment. We instead implement
all tensor manipulation functions in a series of C++ classes that a user can call
directly. The code performs well on a variety of problems and scales in a reasonable
way as the tensors grow large.

Our approach is closer to the MATLAB example than the TCE, in that our classes
are very generic and are not tilted toward one application. Their purpose is to allow
for rapid code development without having to go through a front-end, application-
specific language. While development in C++ is certainly not as fast as develop-
ment in MATLAB, our classes are definitely an improvement in one sense: they can
handle significantly larger tensors than the (serial) MATLAB classes because they
are inherently parallel with out-of-core capability. The approach outlined in the
following sections therefore represent a compromise between computational speed,
ease-of-use, flexibility, and simplicity.

2 Approach

Our development is two-fold. First, we consider a serial version and discuss some
alternatives and modifications. Second, we discuss ways to parallelize it. Recall
that the minimum requirement is the product of two rank-4 tensors with two
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reductions each. That is, we want to evaluate Eqn. (4) repeatedly with m = n =
p = 2.

2.1 Serial algorithm

There are several common techniques for multiplying tensors with or without re-
ductions. One option is to “unwrap” tensors into large matrices, then treat the
tensor operations as an equivalent matrix multiplication. This is a generalization
of the different approaches to matrix-matrix multiplication—when multiplying two
matrices, one may consider the problem in toto, as a series of matrix-vector multi-
plications, as a series of vector inner products, or, most fundamentally, as a series
of scalar operations.

The advantage of reshaping tensors into matrices is that it allows the use of
optimized algorithms. For example, we could apply the level 3, 2, and 1 Basic
Linear Algebra Subprograms (BLAS) for matrix-matrix, matrix-vector, and vector-
vector decompositions respectively. Alternatively, for large tensors in parallel we
may use out-of-core versions of standard techniques such as Cannon’s algorithm
[7]. Most applications to date have explored ways to convert tensor operations to
matrix operations [6, 20].

All arithmetic in this paper, however, is confined conceptually to the scalar
level. Our code does in fact use C-interface BLAS internally when available, but for
every use of those libraries, we provide equivalent scalar loops so that a user may
compile and run without optimized libraries. The reader may therefore picture
our algorithms as purely scalar loops without losing any understanding of the
essential concepts. Emphasizing low-level operations allows us to produce a single
code for arbitrary-rank tensors with arbitrary reductions without adding too much
complexity. Also, it allows us to study the internal operations in detail and split
up the tensors more easily in parallel.

The multiplication function is therefore equivalent to a straight serial loop over
all combinations of indices. In the notation of Eqn. (4), the number of arithmetic
operations is

# =



2C1C2 . . . CpA1A2 . . . AmB1B2 . . . Bn p > 0
A1A2 . . . AmB1B2 . . . Bn otherwise

. (5)

For example, if all dimensions are approximately equal to N , then a multiplication
of two rank-4 tensors with two reductions costs O

`

N6
´

. The number of operations
for the multiplication is fixed, although it is possible to optimize the running time
by considering data locality and other machine-dependent factors.

The k-index transformation is trickier. Consider as an example the formation
of a rank-4 tensor,

vmnpq = ghijkz1

mhz2

niz
3

pjz
4

qk. (6)

Eqn. (6) is itself a product of four tensors with one reduction each, so it is possible to
compute it by calling a product function repeatedly. This is in fact the most efficient
method in terms of number of operations. Inverting the order of multiplication and
collecting intermediate terms gives

vmnpq = z4

qk

`

z3

pj

`

z2

ni

`

z1

mhghijk

´´´

. (7)

Evaluating this expression requires

# = 2MK (HIJ + IJN + JNP + NPQ) (8)
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multiplication and division operations. When all dimensions are similar, we write
this as 8N5 and denote the computational complexity as O

`

N5
´

.

Remark 2.1 This bookkeeping does not account for the number of operations needed
to form the core tensor in the first place. In practice, the core tensor may require
on-the-fly computation, or perhaps even disk access. The level of ease or difficulty of
creating pieces of the core tensor can greatly affect the effectiveness of our approach.

Remark 2.2 The fact that M—the left-most index in the result—is on the outside
of the parentheses in Eqn. (8) will be very important in the parallel version of
the algorithm. It may seem at first that the order of evaluation is non-intuitive,
but it will allow us to divide the problem for parallelization without increasing the
computational complexity beyond that of the final product.

The problem with a näıve product in Eqn. (7) is that H , I , J , and K could be
very large, so the intermediate tensors could be too large to store on a single pro-
cessor. We assume in the next section that any processor can store small pieces of
each tensor, but not the whole thing. One way to decrease the storage requirements
is to fuse the loops that produce intermediate tensors. Loop fusion is a common el-
ement in the TCE, which has generated significant interest in optimizing the levels
of fusion for various types of tensor products [3, 14].

By fusing two loops over the product in Eqn. (3), we reduce the intermediate
storage requirements by two dimensions, so if a tensor has rank k, then the inter-
mediate tensors have rank k−2. A rank-3 tensor only requires the storage of a few
vectors, a rank 4 tensor only requires the storage of a few matrices, etc. While it is
possible to fuse loops more deeply and and further reduce memory requirements,
reducing by two is sufficient for most applications.

Fig. 1 illustrates the concept applied to Eqn. (7). An unfused version requires
the storage of rank-4 intermediate tensors, while the fused version requires the
storage only of matrices. Both have the same number of operations. This is just
an example to illustrate the concept of loop fusion—the actual code is much more
general (and much less legible) because it works on tensors of any rank.

The notation of Fig. 1 is a form of compressed-loop pseudocode, where the
order of the loop variables in the for declaration indicates the order of nesting.
Assigning a scalar to a tensor quantity, as in T1=0, implicitly assigns the scalar to
the whole tensor element-wise.

2.2 Parallelization

As mentioned in Sec. 1.2, we do not convert the tensors internally into matrices. We
instead reduce the problem in concept to a string of scalar loops as in Fig. 1. (To
reiterate—internally, we collect many of the scalar loops and use BLAS functions on
subsets of the problem when possible. The reader loses no understanding, however,
by perceiving our algorithms on a scalar level.) What this means in practice is that
we break the problem into a set of serial multiplications on individual processors,
rather than use an intrinsically parallel algorithm with all its attendant message
passing and disk access.

A few key assumptions are necessary to compute Eqn. (4) in parallel. For the
rest of this paper, a row of a rank-k tensor is a rank-(k−1) tensor formed by fixing
the first index of the original. For example, u3jk is a row of the rank-3 tensor, uijk.
Our primary assumptions are the following:
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T1=0; T2=0; T3=0; v=0;

for m,k,j,i,h to M,K,J,I,H

T1(m,k,j,i) += z1(m,h)*g(h,i,j,k)

end h,i,j,k,m

for n,m,k,j,i to N,M,K,J,I

T2(n,m,k,j) += z2(n,i)*T1(m,k,j,i)

end i,j,k,m,n

for p,n,m,k,j to P,N,M,K,J

T3(p,n,m,k) += z3(p,j)*T2(n,m,k,j)

end i,j,k,m,n

for q,p,n,m,k to Q,P,N,M,K

v(m,n,p,q) += z4(q,k)*T3(p,n,m,k)

end k,m,n,p,q

v=0

for m,k to M,K

T1 = 0

for j,i,h to J,I,H

T1(j,i) += z1(m,h)*g(h,i,j,k)

end h,i,j

T2=0

for n,j,i to N,J,I

T2(n,j) += z2(n,i)*T1(j,i)

end i,j,n

T3=0

for p,n,j to P,N,J

T3(p,n) += z3(p,j)*T2(n,j)

end i,j,n

for q,p,n to N,P,Q

v(m,n,p,q) += z4(q,k)*T3(p,n)

end n,p,q

end K,M

Figure 1: Loops used to calculate Eqn. (7): unfused (left) and fused (right)

1. All tensors can be formed one row at a time, either from the k-index trans-
formation, as in Eqn. (3), or else by loading a row from disk.

2. The u and v are similar to each other in dimension and size.

3. The dimensions of the first indices of u and v are not small compared to any
of the other dimensions.

4. Each processor has enough memory to store one row of u, v, and w simulta-
neously.

The task is to distribute the rows of u and v (from Eqn. (4)) among the pro-
cessors in an efficient way. We consider two techniques: simultaneous distribution
and scheduling. The former is useful only for very small tensors or when inter-
processor communication is impossible for long lengths of time. The latter is much
more appropriate for large tensors on most modern clusters.

Both are implemented in the C++ classes described in Sec. 3, and both use the
same basic concept of splitting the problem into a set of row-row multiplications.
The difference between the two parallelization techniques is in the way we allocate
combinations of rows of u and v.

Before discussing specifics, we should ask whether the overall approach is a
reasonable. Let A1 and B1 be the number of rows of u and v respectively in
Eqn. (4), and let P be the number of processors. Multiplying u and v requires the
multiplication of A1B1 individual rows. In the allocation of the workload, we must
be careful not to ask for too many redundant formations of u and v.

Consider, for example, the multiplication of two rank-4 tensors with two re-
ductions. Let all the dimensions in the system be roughly the same, and call that
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dimension N . On a single processor with sufficient memory, the multiplication of
u and v requires the following tasks:

• Form all of u and v: 16N5. Multiply them: 2N6.

The total flop count is 2N6 + 16N5. Now consider the same operation on N2

processors. Each processor forms one row of u and one row of v using the 4-index
transformation and then multiplies them. This requires redundant formations:

• Form each row of u and each row of v N times: 16N6. Multiply all rows:
2N6.

The total flop count is 18N6. With fewer processors, the operations count will be
smaller only if the allocation is rational in avoiding extra formations. (Now it is
clear why moving the row index on the outside of the parentheses of Eqn. (8) is
critical to the success of the current approach: Forming a single row costs 8N4,
whereas it would cost 8N5 if we evaluated Eqn. (7) in another order.)

Our approach is therefore reasonable if done properly. It adds some extra
calculations but the computational complexity is still of the same order. We note,
however, that the utility of breaking up the problem into smaller and smaller pieces
is limited due to the increasing number of redundant formations. With very large
problems, it would be necessary to interleave disk access operations with formations
rather than using exclusive on-the-fly formation.

The following two sections discuss two methods for allocating the workload.

2.3 Simultaneous distribution

In this technique, processors work in isolation from other processors. Each pro-
cessor computes its section of the workload based on its identifier, the size of the
multiplication, and the total number of processors in the system. The algorithm
for determining the work that processor n performs switches on two cases:

• P < A1:

In this case, each processor has to multiply one or more rows of u by all rows
of v. If P = A1/2, then each processor receives two rows of u; if P = A1/3, then
each receives three rows, etc. The difficulty is when P is not an integer division of
A1, and there are left-over rows to distribute.

Let ⌊·⌋ denote the floor operation. If processor n receives I rows of u, starting
at row i (zero-indexed), then i and I are given by

i = n ⌊A1/P ⌋ + min {n, (A1 mod P )} , and (9)

I = ⌊A1/P ⌋ +



1 n < (A1 mod P )
0 otherwise

(10)

When the number of processors grows larger than A1, the distribution becomes
more complicated.

• P ≥ A1:

In this case, each processor works on exactly one row of u, and all the processors
assigned to a given row then split up v among themselves. Processor n is assigned
to the following row, i, of u:

i =

8

<

:

n/(d + 1) n < m(d + 1)

m +
n − m(d + 1)

d
n ≥ m(d + 1)

(11)
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Figure 2: Distribution for A1 = 6, B1 = 5, with P = 4 (left) and P = 14 (right)

where m = (P mod A1), and d = ⌊P/A1⌋.
To determine what piece of v processor n receives, define two quantities: q and

Q. These are similar to n and P , except that they are local on a single row of u.
Specifically, Q is the number of processors on current row,

Q =



d + 1 n < m(d + 1)
d n ≥ m(d + 1)

. (12)

while q is the rank of processor n among the processors assigned to the same
processor:

q =



n mod (d + 1) n < m(d + 1)
[n − m(d + 1)] mod d n ≥ m(d + 1)

(13)

In a formulation similar to Eqns. (9) and (10) above, let j be the first row of v
that processor n operates on, and let J be the number of rows of v. The formulas
are

j = q ⌊B1/Q⌋ + min {q, (B1 mod Q)} , and (14)

J = ⌊B1/Q⌋ +



1 q < (B1 mod Q)
0 otherwise

(15)

For a visual depiction of the distribution, consider the plots in Fig. 2. These
show the numbered rows of u and v in columns and rows respectively. The rounded
rectangles represent the assignment area for a single processor. In the numbering
scheme described by Eqns. (9-15), the processor numbers start at zero in the top-
left and increase left-to-right, top-to-bottom.

In summary, this technique has several advantages and disadvantages. The
primary advantages are that it incurs very little redundancy and has essentially no
communication. On the downside, the technique is difficult to adapt to machines
with different processor speeds or non-exclusive nodes, and it works best only if
the number of processors either divides or is divided by the number of rows of u
(i.e., P = {. . . , A1/3, A1/2, A1, 2A1, 3A1 . . .}).

A better way to parallelize the algorithm on machines with inter-process com-
munication is to schedule pieces of the multiplication dynamically. This is more
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robust, but it runs the risk of inducing more redundant formations than would
otherwise be necessary. As a partial remedy, we use a heuristic to assign new rows
to processors depending on their previous states.

2.4 Scheduling

The basic mechanism for scheduling is simple: each time a processor requests more
work, it receives from the scheduler some row i of u and some row j of v: (i, j).
The processor then forms the ith row of u (if necessary) and the jth row of v
(if necessary) either using the k-index transformation or loading from disk, and
then multiplies the two rows. The scheduler should assign row pairs so as to avoid
unnecessary formations.

The exact means through which we perform the scheduling may change—what
is important is the procedure used to assign pieces of the task. For now, assume
that one processor performs scheduling exclusively, while all others perform the
formation and multiplication. Future versions of the code may allow the scheduler
to do computational tasks as well, or they may even dispense with a root node and
instead let each processor schedule itself according to global data. Such a change
would be transparent to the user.

Let P be the number of processors doing actual computation. Let s be a table
of length P that lists an approximate speed for each processor relative to others.
For example, if there are five processors, and the first three are twice as fast as
the others, then the table could be any positive multiple of s =

`

2 2 2 1 1
´

.
Denote the kth element of s as sk.

Two other tables, U and V, of length A1 and B1 respectively, track the amount
of work left to do on each row of u and v. They essentially describe how “crowded”
the rows of u and v are, where a processor’s contribution to the crowd depends on
its speed.

The following two paragraphs describe the construction of U . The construction
of V is analogous.

Each row of u corresponds initially to B1 rows of v: (i, 1), (i, 2), ... , (i, B1).
We let mi be the number of unassigned rows of v in row i of u, so mi = B1 initially
for each i, and we decrement it every time a processor receives a pair of the form
(i, ∗). Let Ii be a set containing IDs for all processors that are currently working
on a pair of the form (i, ∗). (Ii could be empty.)

Define the ith element of U to be

Ui =
mi

1 +
P

k∈Ii
sk

. (16)

Initially, all elements of U are equal to B1. The value of Ui falls as processors are
assigned rows i of u, until eventually U is all zeros. The higher the value of Ui, the
less crowded that particular row of u, and the more attractive that row is for fresh
assignment.

Consider a processor that just finished (i0, j0) and is requesting more work from
the scheduler. The scheduler will look at the remaining work available and send
back a new row-pair, say (i, j), to the processor for formation/multiplication.

Our rule for assigning a new row-pair is

1. If Ui0 > 0, then we may stay on this row of u. Perform the following:

• Let j be such that Vj = max {Vj ∈ V | pair (i0, j) is available}.
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• Assign the processor to the pair (i0, j).

• Update Ui0 , Vj0 and Vj .

2. Otherwise, if row j0 is available on some other row i of u, then

• Let i be such that Ui = max {Ui ∈ U | pair (i, j0) is available}.

• Assign the processor to the pair (i, j0).

• Update Ui0 , Ui, and Vj0 .

3. Otherwise,

• Let i be such that Ui = maxU

• Let j be such that Vj = max {Vj ∈ V | pair (i, j) is available}.

• Assign the processor to the pair (i, j) .

• Update Ui0 , Vj0 , Ui, and Vj ,

In other words, we try to prevent the processor from having to form a new row of
u. If that is unavoidable, we assign it to a new u but try to prevent it from having
to form a new row of v. If that is unavoidable, we assign it to new row of u and v.
Whenever we have to assign a new row, we choose one that is the “least crowded”
according to the U and V.

Two special cases apply. If this is the first request from a particular processor,
then obviously (i0, j0) makes no sense, so skip to step 3. If all combinations are
exhausted (i.e., U ≡ 0), then return an exit code.

We test this procedure using a stochastic simulation written in MATLAB. The
simulation models a parallel computer as a structure array of “processors”. Each
processor has a speed—the mean return time it takes for the simulated processor
to multiply two rows—and a standard deviation.

The simulation runs over all A1B1 row combinations. Each time through the
loop, it determines which processor will return next. It assigns a new row combina-
tion to that processor using our distribution procedure, and then it computes a new
return time by drawing on a normal distribution with the processor’s mean return
time and standard deviation. During this process, we track total time and total
number of formations, both of which we may then compare to ideal computation
cases.

To illustrate, we consider a simulated machine with two different types of pro-
cessors. We assume that half the processors have speed 1 and the other half have
speed 1/3. The mean time it takes a processor to multiply two rows is the recipro-
cal of its speed, and the standard deviation is 10% of that. We model formations
of individual rows via the k-index formation for two rank-4 tensors, so it takes 4
times as long to form a single row as it does to multiply two rows.

In order to quantify the results in an intelligible way, we compare to an “ideal”
distribution scheme. The ideal number of formations occurs when no processor
ever has to form two rows after the initial assignment: A1B1 + P formations.
Determining an ideal computation time is more complicated due to discretization
effects. We do not calculate the absolute, best possible running time; rather we
estimate it based on the following derivation.

Let f be the cost of formation relative to the cost of multiplication so the cost
of forming two rows and multiplying them is 1 + 2f . Consider a setup like the one
described above, where the system has P processors, some of which have speed 1,
and some of which have speed 1/c. Let χ be the fraction of processors with baseline
speed 1. Each processor receives an initial assignment of two rows, which leaves
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Figure 3: Simulated performance of the scheduling scheme: Number of formations vs P
(left) and Time vs P (right)

A1B1 − P row combinations remaining. Let α be the fraction of those remaining
combinations assigned to the baseline processors.

Disregarding discretization effects, the ideal running time should occur when
the baseline processors and the off-speed processors both finish at the same time.
That is to say, α must satisfy,

(1 + 2f) + α (1 + f)
(A1B1 − P )

χP
=

c (1 + 2f) + (1 − α)
c (1 + f) (A1B1 − P )

P (1 − χ)
. (17)

Solving for α and substituting into the left-hand side gives the following estimate
of “ideal” running time:

Tideal = (1 + 2f) +
(1 + 2f) (c − 1) (1 − χ) + c (1 + f) (A1B1 − P ) /P

1 + χ (c − 1)
. (18)

In our configuration, c = 3, f = 4, and χ = 1/2.
By any measure, the simulation indicates that our scheduling procedure is ro-

bust and avoids most unnecessary row formations. The curves in Fig. 3 illustrate
the performance of the distribution procedure. To generate Fig. 3, we choose
N = A1 = B1 ∈ {32 , 64, 128, 256, 512}, P ∈ {8 , 16, 32, 64, 128, 256, 512} and
run the simulation five times for each combination of P and A1. The lines on the
plot pass through the average of all five points at each P .

The number of formations and the running time both deviate most from the
ideal when the problem size is small relative to the number of processors. Results
are also more volatile in those cases. Randomness and discretization probably
account for this, as such effects are more significant with smaller problems than
with larger problems.
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3 Implementation

We implement our algorithms in a set of C++ classes. The following sections
describe pieces of the classes and illustrate ways to use them to perform some
common tasks. The discussion is split into descriptions of serial and parallel code,
although this distinction is sometimes artificial; many of the same basic concepts
apply in both cases.

Both the serial and parallel classes contain a significant number of utility func-
tions. They can load and store tensors or characteristic matrices in text or binary
formats with a variety of choices of notation. (For example, they can print in
a binary, compact text, or a more human-readable text form.) The parallel class
bTensorPar contains broadcast functions for the whole tensor and for the character-
istic matrices. There are access functions for elements such as rank, dimensionality,
number of elements, MPI data, formation flags, etc. There are operator overloads
for element-wise addition, subtraction, multiplication, and division. The program-
ming interface for the classes may grow more complex as the classes mature, but
most changes should be additions, not deprecations.

3.1 Serial code description

The serial code is in a C++ class called bTensor and a child of that class called
bTensorCharm. The parent class contains all the usual functions for loading, stor-
ing, and printing tensors, as well as a product function, prod, that accepts refer-
ences to two tensors and overwrites the current tensor with their product. It also
defines all the usual access functions and arithmetic operator overloads.

The child class, bTensorCharm, is an extension of the parent. It contains all
the functions and data of the parent class and in addition stores characteristic
matrices as private sub-tensors. The core tensor is a user-defined pointer to a
function that accepts an index vector as input and returns a double corresponding
to that index. Thus, the bTensorCharm class does not actually store elements of
a core tensor, although the user can mimic storage by using static data in the
core tensor function pointer. The class also contains public functions for loading
and printing the characteristic matrices, as well as for forming the tensor from the
k-index transformation.

The formation function formit accepts an offset as an argument, so we may
form only certain “rows”, i.e. sections with a fixed first index. Consider a tensor
aijk with dimensions {I, J, K} = {5, 3, 4}. To access only the third and fourth
rows, perform the following steps:

1. Instantiate a tensor, bmnp, where {M, N, P} = {2, 3, 4}.

2. Load the characteristic matrices of a into b.

3. Set the function pointer in b to define the core tensor.

4. Call formit with an offset of 2.

The 2 × 3 × 4 tensor b now contains the third and fourth rows of the 5 × 3 × 4
tensor a. This ability to peel off individual rows of a tensor becomes important in
the parallel version. Sec. 6 illustrates a sample usage of the bTensorCharm class
without offset.
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3.2 Parallel code description

The parallel code is an extension of the serial code. We define a new class called
bTensorPar that inherits most of the data and functions from bTensorCharm. It
also contains data to represent the MPI state (process ID, communicator, etc.),
and functions for broadcasting, scattering, and collecting either the whole tensor
or the characteristic matrix.

The general procedure for multiplying two tensors is the following:

1. Get MPI information.

2. Instantiate tensors of the proper size.

3. If applicable, load the characteristic matrices and broadcast them.

4. Call the function parProd with desired parameters.

Most of the work is in the parProd function. On the root node, this kicks off
a scheduling algorithm. On all other nodes, it queries the scheduler for rows of u
and v to multiply, then it forms, loads, or otherwise creates rows, multiplies them,
and stores the result according to options passed in.

This procedure is the scheduling method from Sec. 2.4. See Sec. 7 for an example
of working C++ code that implements this algorithm.

The programmer also has access to the scheduler directly through the public
functions getPart() and setPart(). getPart() provides four integer values to
the programmer. The first two are the rows of u and v to form respectively. The
next two give information about whether those rows have already appeared in the
scheduler. For example, the third (resp. fourth) element is either 0, 1, or 2. Those
are codes for the following:

0 The scheduler has not assigned this row of u (resp. v) to any other processor
before.

1 The scheduler has assigned this row of u (resp. v) to another processor, but that
processor has not yet returned for another row pair.

2 The scheduler has assigned this row of u (resp. v) to another processor, and
that processor has completed its assignment and returned for more.

The programmer may use this information to optimize the parallel computation
using formation procedures other than file loading of k-index transformations.

Instead of scheduling, we could use the all-at-once function and create large
pieces of the tensors at once instead of row-by-row. This is implemented through
the function splitMult(), which, when called, gives each processor a list of row-row
combinations using the formulas in Sec. 2.3. The practicality of such an approach
is limited by memory.

4 Results

We test the parallel code on the flash platform at Los Alamos National Laboratory.
The segment used for the tests has 300 nodes on a Myrinet LANAI interconnect.
Each node comprises two single-core, AMD Opteron processors running at 2.0
GHz, with 8 GB of memory shared asymmetrically between the processors. All
processors have 1 MB of cache. This system offers dedicated nodes, but it also
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enforces strict wall-clock limits that prevent us from evaluating completely out-of-
core tensors (e.g., 512 × 512 × 512 × 512 and larger, with 256 processors and with
memory as listed).

We experiment with the multiplication of two rank-4 tensors with two reduc-
tions. The dimensions are always identical across indices: N ×N ×N ×N , where
N varies from 16 to 128. The number of processors varies from 16 to 256. For
the remainder of this section, we assume that any two tensors being multiplied
have identical dimensions. The characteristic matrices of the tensors are N × N ,
uniformly-distributed random numbers in the interval [−1.05, 1.05]. The core ten-
sors are functions that return a 1.0.

The growth rate of the k-index transformation for a single row is 8N4, while
the tensors grow only at a rate of N4, so for every platform there exists a point
when disk access is faster than on-the-fly formation. For completeness, experiments
that combine disk access and one-the-fly formation have been conducted. In those
experiments, the processors do one of three things upon the reception of a new row
assignment:

• If no other processor has received this row, form the row and save the result
to a binary file so that other processors can use it later.

• If another processor has received this row but has not returned, form the row
but do not save the result to disk.

• If another processor has received this row and has returned, load the row
from a binary file.

These experiments have shown that when disk access is available, the time to
compute the product varies widely and is generally slower than forming the rows
as needed. With larger tensors, however, the tests consistently run faster with disk
access. We can, for example, multiply two N = 256 tensors using file access in
about 8000 seconds, whereas on-the-fly formation runs past wall-clock time limits.
(The wall-clock limit is four hours on the test platform.)

Thus, while it might be faster in many situations to load an already-computed
row from disk rather than generate it anew from characteristic matrices, the perfor-
mance boost from file loading depends on the speed of the file system. For the rest
of the tests in this section, we form individual rows of the tensors on-the-fly using
the k-index transformation and do not save pre-computed rows for future reference.
The results below concentrate analysis on the algorithm itself while attempting to
eliminate other system-dependent properties.

Fig. 4 shows computation time as a function of N . It contains four parts: time
spent on formation, time spent on multiplication, total time, and fraction of total
time spent on multiplication. Each line represents a constant number of processors.

The reported times are the maximum times that it takes for any one processor
to complete its piece of the task, and the total time is the sum of the two. The
actual computation time might be slightly higher or lower depending on other,
non-timed operations and general distribution of the workload.

Consider, for example, a run where one processor spends 5 seconds forming
rows but only 2 seconds multiplying them, and another processor spends 4 seconds
forming rows and 3 seconds multiplying them. Then the reported values of time-to-
form, time-to-multiply, and total time satisfy respectively Tform ≥ 5, Tmult ≥ 3, and
Ttot ≥ 8, although the total computation time may be no longer than 7 seconds.
Effects like these should be insignificant for large tensors.
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Figure 4: Computation times and ratio vs. N for different numbers of processors; left
to right from top left: Tmult, Tform, Ttotal, and Tform/Tmult
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Figure 5: Computation times and ratio vs. P for different N ; left to right from top left:
Tmult, Tform, Ttotal, and Tform/Tmult

Fig. 5 shows vertical slices of Fig. 4. Each curve represents a different value of
N and decreases according to an increasing number of processors.

4.1 Scaling results

We use several methods to measure scaling efficiency. Customarily, the term “ef-
ficiency” refers to speedup relative to a serial algorithm. We use the serial tensor
classes to produce serial timings by having them form all of u and v from charac-
teristic matrices, then multiply them and place the result in w. Other, less generic,
algorithms may perform slightly better than the current serial code, but the current
ones are reasonably fast and provide a good baseline for scaling calculations.

Unfortunately, memory and run-time limits on the parallel machine preclude
serial timings for N > 64. We still compute scalings for N = 128, but they are
relative to smaller parallel runs, not serial runs. Three tables below outline some
basic properties of how well the algorithms scale. All times are total times (sum
of multiplication and formation times), and we denote by TP the time required to
complete the operation using P processors.

Tab. 1 is “classical” efficiency: the time required to complete the problem using
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Table 1: Efficiency relative to serial

N T1/16t16 T1/32T32 T1/64T64 T1/128T128 T1/256T256

16 0.22 0.19 0.15 0.10 0.06
32 0.20 0.20 0.18 0.15 0.12
64 0.32 0.31 0.29 0.28 0.29

Table 2: Efficiency relative to P = 16

N T16/2T32 T16/4T64 T16/8T128 T16/16T256

16 0.88 0.69 0.48 0.30
32 1.00 0.94 0.78 0.62
64 0.99 0.93 0.88 0.92

128 0.96 0.92 0.87 0.96

one processor, divided by the time it takes to complete using P processors times
P . In other words, efficiency, E is defined as E = T1/PTP . We do not have a serial
timing available for N = 128, so this is a shortened table.

Tab. 2 illustrates the same concept, except that the baseline is the P = 16 case
instead of the serial algorithm. This is a better way to measure efficiency because
the serial algorithm is impractical for large tensors due to memory constraints. We
should therefore compute efficiency relative to algorithms that will actually run on
the tensors of interest. Recall, too, that the memory requirements for the parallel
algorithm are independent of the number of processors available.

Tab. 3 shows how the run time changes with each step in the number of pro-
cessors. Increasing the number of processors from P1 to a larger number P2 gives
the step value P1TP1

/P2TP2
. We call this “pointwise” efficiency. It displays the

evolution of the efficiency of the algorithm as P grows.

4.2 Issues in analysis

The key point to recognize in Tab. 1 is that there is a significant penalty in going
from serial to parallel initially, so the parallel algorithm with scheduling is not
suited to small tensors where N < 64. For large tensors, however, the efficiency
does not degrade beyond the initial drop.

Table 3: Pointwise (step-to-step) efficiency

N T1/16T16 T16/2T32 T32/2T64 T64/2T128 T128/2T256

16 0.22 0.88 0.79 0.69 0.62
32 0.20 1.00 0.93 0.84 0.80
64 0.32 0.99 0.94 0.94 1.05

128 – 0.96 0.96 0.94 1.11
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The reader should keep two facts in mind: 1) It is difficult to obtain serial
timings for large tensors due to memory requirements, and therefore, 2) comparison
to a serial algorithm is not completely valid, since the real advantage of the parallel
algorithm is in how much memory it saves. For example, a 5124 multiplication
problem in IEEE double precision would require 1.5 TB of memory to form and
multiply in serial on a single processor. To handle this multiplication on a 512-
processor machine using the parallel algorithm, each processor would only need
access to 2 GB—not a small requirement, but not unreasonable.

The exact reason for the performance drop in the transition from serial to
parallel is apparent in the two plots in the right of Fig. 4. The formation time is
lower in the serial algorithm because it can form all of u and v at once without any
redundant formations. The serial algorithm forms exactly 2N rows, whereas the
parallel algorithm must form at least N2 + P if all processors are to be involved.

Redundant formations are of course the inescapable toll for moving out of core.
We determined in Sec. 2.2, however, that the complexity of formation in a parallel
algorithm is of the same order as the complexity of multiplication, namely O

`

N6
´

for rank-4 tensors. Once the initial performance drop is paid for, the slopes of time
vs. N do not bend upwards for sufficiently large tensors.

To ensure that the scheduler is indeed behaving as expected and is not driving
the complexity higher, we record the number of row formations actually performed
during each multiplication and divide them by N2 + P . Fig. 6 shows that the
number of formations never grows more than a couple of percent over the theoretical
parallel minimum.

The run with 256 processors and N = 16 required fewer than N2 + P forma-
tions. Row formation for that experiment was so fast that 81 of the processors
never received row-pair assignments. The job was already over before those pro-
cessors had time to initialize their MPI neighborhoods and call the scheduler for an
assignment. A barrier would have prevented this and ensured that every processor
performed at least two row formations, but then the total clock time to complete
the problem would have been longer. Alternately, we could have used the “simul-
taneous distribution” method instead of scheduling. (Using 256 processors on such
a small problem really is overkill anyway.)

5 Discussion and future work

The tensor multiplication classes described in this paper seem to be very robust,
efficient, and scalable. Using 256 processors of a machine that is not state-of-
the-art, we can form two 2.7-million-element rank-4 tensors on-the-fly from four
16000-element core tensors and multiply them with two reductions—all in about
5 minutes with very little communication overhead. Simulations and practical
experiments indicate that scaling results are good over the ranges of interest, and
that the load balancing system is every efficient. The code has a straightforward
C++ object-oriented interface.

We consider several areas for further investigation:

Core tensor At present, the “core tensor” for the k-index transformation is a
function pointer that accepts an integer index and returns a value corre-
sponding to that index. We use a dummy function for timing studies, but in
several practical problems the generation of the core tensor may constitute
the majority of the total work.
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Figure 6: Total number of formations divided by N2 + P plotted vs. P (left) and N
(right)

Users of the classes can always implement pre-computed core-tensors by set-
ting the function pointer to reference static data, but this might be slow,
depending on the application. As practicality demands, it may be worthwhile
in the future to overload the formation function with different, application-
dependent interfaces.

Strings of products Many applications require the multiplication of long strings
of tensors with different numbers of reductions along the way [1]. One future
goal is to provide a multiple-product public function. This would probably
take the form of a more generic version of the k-index transformation, placed
in the public interface to the bTensorPar class.

File I/O We provide several print and read functions for both binary and text
files. In the timing studies, we discard row-row-multiplications as we compute
them, but practical problems will inevitably include a significant amount
of file access. The fraction of time spent on file access will depend on the
application and the file system itself.

Other transformations There are other common tensor decompositions besides
the k-index transformation. We would probably add these as different classes,
as in [2].

In conclusion, the arbitrary-rank, arbitrary-reduction tensor classes presented
in this paper have the potential for use in a wide array of scientific computing
disciplines. They are works-in-progress, but already they show promise in both
serial and parallel computations.
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6 Appendix: Example use of the bTensorCharm

class

The following code is an example of how to use the bTensorCharm class to load
characteristic matrices, form tensors, and multiply them. All file names and di-
mensions are hard-coded to enhance readability.

#include "bTensorCharm.h"

// Dummy function for core tensor---all ones.

double ones(int *idx) { return 1.0; }

main()

{

// Define dimensions of tensors.

int dvecA[4] = {10,12,5,7};

int dvecB[4] = {4,8,5,7};

int dvecC[4] = {10,12,4,8};

bTensorCharm A(4,dvecA); // Instantiate.

bTensorCharm B(4,dvecB);

bTensorCharm C(4,dvecC);

// Load characteristic matrices from files.

A.setCharm("inputs/charm10-28.dat",0);

A.setCharm("inputs/charm12-63.dat",1);

A.setCharm("inputs/charm5-9.dat",2);

A.setCharm("inputs/charm7-13.dat",3);

B.setCharm("inputs/charm4-13.dat",0);

B.setCharm("inputs/charm8-11.dat",1);

B.setCharm("inputs/charm5-12.dat",2);

B.setCharm("inputs/charm7-17.dat",3);

// Set the core tensors with function "ones".

A.setCore(ones);

B.setCore(ones);

// Form and multiply with two reductions.

A.formit();

B.formit();

C.prod(A,B,2);

// Print to file in nice format.

C.print("outputs/test2.out",2);

}
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7 Appendix: Example use of the bTensorPar

class

The following code is an example of how to use the bTensorPar class to
multiply two rank-4 tensors with two reductions. Most of the code is ded-
icated to file loading, MPI initialization, and storage of the output. The
actual multiplication is in the function, parProd(), which calls the functions
getPart(), and setPart() to schedule.

The code performs basically the same tasks as the serial program, but
in parallel. The dimensions are different, too—the tensors are both 16 ×
17 × 18× 19 with the same dimensions in the columns of the characteristic
matrices. The procedure is as follows:

All Initialize MPI data and instantiate a single row of A and B. Also instan-
tiate C to hold the result of a single row-row multiplication.

Root Load the characteristic matrices and broadcast them.

Non-root Receive the broadcast.

All Call parProd(), with appropriate options.

All Close MPI.

At present, the root node performs only scheduling, so the tensors instanti-
ated on that node are unused.

#include "bTensorPar.h"

// Dummy function for core tensor---all ones.

double ones(int *idx) { return 1.0; }

main(int argc, char **argv)

{

int procs, myid; // MPI data.

const int root = 0; // Root id.

int dimA[4]={1,17,18,19}; // One row of each.

int dimB[4]={1,17,18,19};

int dimC[4]={1,17,1,17};

// Initialize MPI data.

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

MPI_Comm_size(MPI_COMM_WORLD,&procs);

// Instantiate single rows of A, B and C.

bTensorPar A(4, dimA, MPI_COMM_WORLD);

bTensorPar B(4, dimB, MPI_COMM_WORLD);

bTensorPar C(4, dimC, MPI_COMM_WORLD);

A.setCore(ones);

B.setCore(ones);
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// Root loads and broadcasts characteristic matrices.

if (myid==root){

A.setCharm("inputs/charmA0016-0016.dat",0);

A.setCharm("inputs/charmA0017-0017.dat",1);

A.setCharm("inputs/charmA0018-0018.dat",2);

A.setCharm("inputs/charmA0019-0019.dat",3);

B.setCharm("inputs/charmB0016-0016.dat",0);

B.setCharm("inputs/charmB0017-0017.dat",1);

B.setCharm("inputs/charmB0018-0018.dat",2);

B.setCharm("inputs/charmB0019-0019.dat",3);

}

A.broadCharm(root);

B.broadCharm(root);

// Multiply with strict formation. Print result out to file.

char CHead [] ="outputs/res", CTail [] = ".dat";

C.parProd(A,B,rowsA,rowsB,NULL,NULL,CHead,CTail,2);

MPI_Finalize();

}
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Coulomb matrix: A quantum chemical tree code. Journal of Chemical

Physics, 104(12):4685–4697, 1996.

[5] T. J. Chung. Applied Continuum Mechanics. Cambridge Universiity
Press, New York, 1996.

[6] X. Gao, S. K. Sahoo, Q. Lu, G. Baumgartner, C.-C. Lam, J. Ramanu-
jam, and P. Sadayappan. Performance modeling and optimization of
parallel out-of-core tensor contractions. In Proceedings of the tenth ACM

SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, pages 266–276, New York, June 2005. ACM Press.

[7] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Par-

allel Computing. Addison-Wesley, second edition, 2003.

[8] A. Hartono, A. Sibiryakov, M. Nooijen, G. Baumgartner, D. E. Bern-
holdt, S. Hirata, C.-C. Lam, R. M. Pitzer, J. Ramanujam, and P. Sa-
dayappan. Automated operation minimization of tensor contraction
expressions in electronic structure calculations. In Computational Sci-

ence – ICCS 2005, Lecture Notes in Computer Science, pages 155–164,
Berlin/Heidelberg, May 2005. Springer.

[9] S. Hirata. Tensor contraction engine: Abstraction and automated par-
allel implementation of configuration-interaction, coupled-cluster, and
many-body perturbation theories. Journal of Physical Chemistry A,
107(46):9887–9897, 2003.

[10] R. W. Johnson, C.-H. Huang, and J. R. Johnson. Multilinear algebra
and parallel programming. The Journal of Supercomputing, 5(2–3):189–
217, 1991.

23



[11] R. A. Kendall, E. Apra, D. E. Bernholdt, E. J. Bylaska, M. Dupuis,
G. I. Fann, R. J. Harrison, J. Ju, J. A. Nichols, J. Nieplocha, T. P.
Straatsma, T. L. Windus, and A. T. Wong. High performance com-
putational chemistry: An overview of NWChem a distributed parallel
application. Computer Physics Communications, 128(1):260–283, 2000.

[12] R. Kobayashi and A. P. Rendell. A direct coupled cluster algorithm for
massively parallel computers. Chemical Physics Letters, 265:1–11, 1997.

[13] S. Krishnan, S. Krishnamoorthy, G. Baumgartner, D. Cociorva, C.-C.
Lam, P. Sadayappan, J. Ramanujam, D. E. Bernholdt, and V. Chop-
pella. Data locality optimization for synthesis of efficient out-of-core al-
gorithms. In High-Performance Computing – HiPC 2003, Lecture Notes
in Computer Science, pages 406–417, Berlin/Heidelberg, February 2003.
Springer.

[14] S. Krishnan, S. Krishnamoorthy, G. Baumgartner, C.-C. Lam, J. Ra-
manujam, P. Sadayappan, and V. Choppella. Efficient synthesis of out-
of-core algorithms using a nonlinear optimization solver. Journal of

Parallel and Distributed Computing, 66(5):659–673, 2006.

[15] B. Kumar, C.-H. Huang, P. Sadayappan, and R. W. Johnson. A tensor
product formulation of Strassen’s matrix multiplication algorithm with
memory reduction. Scientific Programming, 4(4):275–289, 1995.

[16] A. J. McConnell. Applications of Tensor Analysis. Dover, New York,
1957.

[17] P. Piecuch, S. A. Kucharski, K. Kowalski, and M. Musial. Efficient
computer implementation of the renormalized coupled-cluster methods:
The R-CCSD[T], R-CCSD(T), CR-CCSD[T)], and CR-CCSD(T) ap-
proaches. Computer Physics Communications, 149:71–96, 2002.

[18] A. P. Rendell, T. J. Lee, and R. Lindh. Quantum chemistry on parallel
computer architectures: Coupled-cluster theory applied to the bending
potential of fulminic acid. Chemical Physics Letters, 194:84–94, 1992.
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