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Abstract

Ultra-lightweight, membrane primary mirrors offer
a promising future for space telescope technology.
However, the advantages of the lightweight structure
of the mirrors are restricted by an extremely high
susceptibility to microyield. Hence, careful packag-
ing of the membranes is required when transport-
ing mirrors of this type into space. Four packag-
ing models, a cylindrical roll, an umbrella model,
a multi-cut model and a single cut model, are pre-
sented and compared with each other. Factors such
as curvature of the compressed membrane, stability
after deployment, and the size of the launch vehicle
are considered. All four packaging models appear to
be feasible with certain materials and hence warrant
physical testing.

Introduction

As described in [2], there have been dramatic im-
provements in technologies and concepts for large
telescopes for both ground and space applications.
However, the act of launching objects into space
poses specific constraints on the structure and de-
ployment of the cargo transported. Due to the
high launch cost, ultra-lightweight, membrane pri-
mary mirrors have long been sought after by both
NASA and the Department of Defense as a technol-
ogy that could realize large aperture systems with
low areal densities. Research on membrane struc-
tures has culminated in the fabrication of meter-
class lightweight structures with optical quality sur-
faces. These membranes are 10-100 microns thick
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and have surface qualities usable in visible spec-
trum applications. However, the available struc-
tures that provide boundary support are so heavy
that they eliminate the benefit derived from such
lightweight apertures. Since these membranes must
maintain an extremely high surface quality after re-
lease into space, the membranes cannot be packaged
in ways that deform their shape outside an extremely
small acceptable range. Thus, many factors must be
taken into consideration when developing strategies
for folding the membranes.

A sketch of a prototypical telescope is depicted in
Figure 1. As diameter length of the primary mir-
ror increases, so does its power of resolution. Cur-
rently, the size of such telescopes has been bounded
by the size of the launch vehicle. More recently,
however, researchers have begun to consider ideas
regarding packaging methods that would enable the
compactification of much larger mirrors without cre-
ating damage beyond desired accuracy. In order to
attain the successful packaging of a large mirror, one
must carefully consider the size of such an aperture,
the size of the launch vehicle, the ease of deployment
of the membrane into space, stability, the curvature
of the folding method, as well as the allowable de-
formation of the material after being compacted.

/ primary mirror

secondary mirror

Figure 1: Schematic representation of membrane
mirror system.



Four different compacting schemes are considered
in the following analysis. These schemes include
folding arrangements for an uncut aperture as well
as arrangements that require cutting the aperture at
certain places. The radius of curvature necessary for
each folding will be evaluated and compared to the
minimum radius of curvature allowed by potential
aperture materials.

Cylindrical Roll

As stated previously, one goal of any membrane
folding is to assure that it fits into the launch vehi-
cle. In subsequent discussion, two ways to compress
the membrane without cutting it are developed while
noting that control of the maximal curvature is nec-
essary.

The usable surface of the membrane also cannot
be too small in order to guarantee a good resolu-
tion. The mathematical tool to compute whether
the effective size of a membrane is sufficiently big is
based on the Modulation Transfer Function (MTF).
Consider the doubly curved membrane as depicted
in Figure 2. Let D denote the diameter of the aper-
ture when projected into the xy—plane, and let d
be the diameter of the hole in the membrane. If a
matrix M is defined to have an entry of one wher-
ever there is membrane material and zero elsewhere,
the resulting Autocorrelation Function computes the
convolution of M with itself. Dividing this matrix
by the number of ones in M yields the MTF of M.
If the MTF value at a point inside the perimeter of
the original shape falls below 20%, it becomes diffi-
cult or even impossible to resolve certain objects. In
Figure 3, values under 20% are black. Once those
parts intrude into the black circle representing the
size of the disk, the size of the surface is too small.

In the case of the washer, d needs to be smaller
than approximately 0.5D in order for the mirror to

Figure 2: Doubly curved membrane.

Figure 3: The MTF of the membrane matrix M for
d=0.1D,d=0.5D, and d =0.6D.

have a sufficient resolution. (Remark: In Figure 3
and later figures of the MTF, only the center part
of the MTF matrix, which is the relevant part, is
plotted.)

Since the optimization of the total aperture weight
is also desirable, the maximum d (i.e., d = 0.5D) is
used in this and most of the other sections. However,
one might want to go with a smaller d in order to
increase stability.

When trying to find a way to package the mem-
brane in the launch vehicle, probably the most
straightforward idea is to roll the membrane once
as depicted in Figure 4. If the membrane was flat,
pulling two opposite sides of the aperture together
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aperture

Figure 4: Cylindrical roll and geometry for comput-
ing the different radii of curvature of the cylindrical
roll.

would result in a cylindrical roll. In reality a more
complicated shape would result because the mirror
is doubly curved. Computation of the the maximal
radius of curvature for this cylindrical roll begins by
considering the radius R; of the inner circle.

Assume that the aperture can be looked viewed
as a circle, even if, in fact, it has a parabolic shape.
This is reasonable as long as the radius of curvature
L of the mirror is much bigger than its diameter D.
From Figure 4 it follows that

a=sin"! 2
N 2L )"

Therefore the arc length once across the membrane
is
{=2alL

and hence
alL L D
Ri=—="sin"!'{—=]. 1
0 — (2L> (1)
From Figure 4, one can see that when rolling

the membrane, the outer radius of curvature R, is
bounded below by

Ro>R;—h

where

D
=L—\/L?— =
h 4

Therefore the largest curvature will occur at the out-
side of the roll. Hence, for the minimal radius of
curvature Ry = min{R,, R;} = R, of the cylindrical
roll, the estimate

L D / D2
RF > 'I]_l [ [2
71' ot (2L> 4 (2)

holds. Since the material can only sustain a limited
curvature due to optical constraints, (2) sets bounds
on L and D.

Finally, consider the constraint that the folded
membrane has to fit into the rocket, and let R, ocker
be the radius of the rocket. It follows that if the
cylindrical roll is in an upright position, this condi-
tion is satisfied if

L. (D
Rrocket 2 R’L — = S1n (2L> . (3)
Clearly the height of the roll is given by D.

For example, if a rocket has a radius R,ocker = 2 m
and the mirror has a radius of curvature L = 20 m,
then a membrane mirror of 12.3 m can be packaged
as a cylindrical roll.

Umbrella Design

The umbrella design, while one of the easiest to as-
semble, is also one of the least compact. Simply put,
this design is a doubly-curved washer, folded down
an axis through the center like an umbrella. The
only action required to unfurl it is a one-dimensional
slide along a rod. Like the cylindrical roll, the um-
brella design requires no cuts of the material and
can therefore tolerate a large inner diameter while
maintaining a sufficiently MTF.

Of course, there is no canonical way to fold a cir-
cular, doubly curved washer along the inner wall of
a cylinder, so this design requires a choice of folding
patterns. The following discussion is an analysis of
one particular — and particularly straightforward —
choice of folding geometry, but others may be more
efficient.

Figure 5(a) shows a cross-section of the folded
mirror with the proposed folding geometry. It is a
set of nine circles arranged in a ring, with nine cir-
cles on the outside of the ring. As discussed below,
this design may accommodate more or fewer circles,
depending on the compactness requirements. The
folded mirror weaves through the circles in a natu-
ral pattern, as indicated by the solid lines. Figure 6



Figure 5: (a) Cross-section of the folded umbrella,
and (b) geometry of the folded umbrella.

shows a diagram of a full, three-dimensional, com-
pressed mirror.

The use of circles in the folding pattern makes the
overall shape easy to analyze. Figure 5(b) shows
an expanded region of a cross section of the folded
design. Let N be the total number of circles in either
the inner or outer ring, and let D, d, and R,,cket be
defined as in the previous section. Trigonometric
computations then yield the angles and lengths

27

a = (4)

R(1+\/§+cot%>. (7)

Thus, the arc length from point 1 to point 2 is
7R (5/3 —2/N) and the arc length from point 2 to
point 3 is 57R/3. The total arc length is

s=NwR<%—%). (8)

The number of folds, N, should be as small as pos-
sible in order to keep the minimum radius of curva-
ture, R, as large as possible.

Two geometrical constraints determine the mini-
mum N. First, the total arc length at the bottom
(i.e., the widest part) of the umbrella must be 7 D.
Second, the folded design must fit inside a payload
bay with radius, R,ocket; S0 L < Ryocket, again at
the bottom of the umbrella. The constraints, to-
gether with (7) and (8), show that N must be large
enough to satisfy

D (1+ /3 + cot(m/N)) 0
Y

Rrocket >

In order to support the membrane properly, N
should be at least 5, but this does not usually con-
strain the design, since the size of the payload bay
dictates that there be at least 8-9 folds in most cases.
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Figure 7: Design parameters versus D.

The total arc length on top is 7d, so (8) gives the
minimum radius of curvature

d

T N -2y

(10)
In summary, the design algorithm for the folding
umbrella can be summarized as follows:

e Start with a given D and R,,cket- Choose d to
be as large as possible while still satisfying the
required optical properties (usually d =~ 0.5D).

e Use (9) to compute the minimum N required to
fit the umbrella into the payload bay.

e Use (10) to compute the minimum radius of cur-
vature at the top.

e This will dictate the material composition and
maximum thickness of the membrane.

Figure 7 shows the behavior of N and Rp as func-
tions of D for d = 0.5D and R,,cket = 2 m.

Clearly, the number of folds becomes too large and
the minimum radius becomes too small as D grows
above 15 m. The reason for this is that the design
uses only circular folds, whereas other choices might
be more efficient in other situations.

Figure 8, for example, shows a cross section at the
bottom of the umbrella for R,ocker = 2 and D = 18,
which together force N = 57. The circular folds
in this case are obviously inadequate, since the cen-
ter of the cross section is an large open space with
no material, while the folds form a highly twisted
perimeter.

Therefore, for larger mirrors, other choices of fold-
ing patterns besides circles — such as stacking more

Minimum Radius of Curvature (m)

Figure 8: Failure of the circular folding pattern.

layers of circles, using ellipses, etc., — are superior.
As the folding patterns become more complicated,
analysis of the design becomes more difficult.

Nonfeasible Pattern

To illustrate the possibility of other folding pat-
terns, consider one choice that turns out to be inad-
equate. Let r,, p, and 6 be a fixed radius, a fixed
integer, and an angular coordinate, respectively. De-
fine a cross-section of the umbrella as the image of a
parameterized curve given in radial coordinates by

(11)

The sine function applied along a circle becomes
very sharp near the origin, thus inciting an unac-
ceptably small radius of curvature. For example,
consider R, ocket = 2 and D = 10, with p = 10.
Then setting ro = 1.25 at the bottom of the um-
brella seems reasonable. The total arclength of the
cross-sectional curve must be 7D, which leads to a
value of p = 0.74.

Figure 9 illustrates what happens next. A ring on
the outside indicates the dimension of the payload
bay, and the inner curve is the wrapping pattern.
As illustrated in the figure, the minimum radius of
curvature that occurs nearest the origin is untenable.
In fact, it has a closed-form representation

The minimum radius of curvature of the parametric
curve with the given values is about 0.035 m which
is too small for most materials.

x(0) = (10 + psin(pb), 0).

2
(ro — p)
ro — p— pp?

(7"0+P)2
ro +p+pp*’

Rmin,curve = min {
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Figure 9: Parametric sine folding pattern.

Multi-Cut Model

We consider here the analysis of a model which
consists of dividing the membrane in N parts and
then rolling them so that they can fit inside the
launch vehicle.

Analysis of Single Component

The multi-cut configuration is illustrated in Fig-
ure 10. Here N cuts are made along a diameter of
the lens, from the outer disk to the inner one. This
particular configuration allows an excellent original-
to-packaged compression ratio, and thus larger lens
would fit into current launch vehicles. The analysis
of this configuration is not complicated and begins
by reducing the three-dimensional lens down to a
two-dimensional circle. This simplifying assumption
is reasonable since the original three-dimensional
lens curvature is low for telescope and focusing mir-
ror applications.

As shown in Figure 10 and Figure 11, after a cut
is made, the piece is rolled along chord S to form a
shape that is circular near its bottom but somewhat
parabolic at the top. The whole folded piece now
looks like a cylinder with a diagonal part removed.
The top portion will naturally go into a state of low-
est energy, and the implication is that the curvature
of the top is not high enough to cause concern. The
bottom circle is where greatest curvature K3 will oc-
cur. This K} can be expressed as

S =2nRy = Dsin(n/N)
D
Ry, = o sin(w/N)

1 2w

K = — = —
" R, Dsin(r/N)’

\

Figure 10: The multi-cut mirror with N = 5.

where N > 1, and K}, is the curvature value at the
bottom of the rolled up piece.

Since natural stability of the lens after deployment
is a consideration, a large value of N would not be
advantageous in that regard. However, cutting the
lens into a large number of pieces does have its merit.
When N goes past a certain value, pieces no longer
need to be rolled for them to fit into the launch vehi-
cle, and therefore curvature is no longer a consider-
ation. For this particular configuration, a relatively
small N in the range of three to eight was consid-
ered. Values of R, for different N are summarized
in Table 1.

Regarding the criterion concerning the modula-
tion transfer function (MTF), Figure 12 shows that
our lens achieves an overall value of 20% or better.
Stability of the multi-cut model is questionable, but
discussion of the natural frequencies of the mirror

Table 1: Radius of curvature R; of each piece for
different values of N (the number of pieces) and D
(the aperture diameter).

N | Ryfor D=10 | Ry for D =20
2 1.591549 3.183099
3 1.378322 2.756644
4 1.125395 2.250791
5 0.935489 1.870979
6 0.795775 1.591549
7 0.690547 1.381095
8 0.609059 1.218119
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Figure 11: A single piece of the multi-cut mirror,
viewed flat.

will not be presented here. To insure maximum sta-
bility for the multi-cut configuration, set the thick-
ness t of the material as high as possible. Curvature
restraints dependent on thickness are contained in
the next section.

Packing and Deployment Procedure

The last subsection contained an analysis of each
piece of the membrane, and the radius of curvature
versus the maximum curvature of the material and
the rocket radius can be used to decide the number of
cuts to make in each membrane. Here, steps required
in the packing and deployment procedure for the
multi-cut model are summarized.

First the membrane is cut into N parts. Each part
has a mechanism attached which acts as a sliding

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 12: The MTF of the multi-cut mirror

track. This will allow each membrane part to slide
over the one next to it. This action is very similar
to the mechanism used in sliding door closets. A
string which connects and keeps all parts together
goes through the holes on top of each sliding track.
One part slides on top of the next one, this set of
two parts slides on top of the next part, and so on
in successive process until all parts are in one stack.

In the next step the membrane parts are rolled
from top to bottom in such a way that the outer cor-
ners of the first part (on top) will touch each other,
almost forming a cylinder. Next the other pieces roll
around the first piece in a similar fashion.

A concern which arises in the process of packag-
ing is the following: the curvature of the most inner
rolled part must satisfy the maximum curvature cri-
teria, and the radius of curvature of the outermost
rolled part must be less than the rocket radius.

In order to recover the original membrane, the
unfolding proceeds in reverse manner: all the parts
unroll and each part slides in the opposite direction
as in the original packaging process. Finally, the
string will tighten the separate pieces together.

Single Cut Model

Cutting the disk in one place and then rolling the
resulting strip around itself is another folding pos-
sibility. The single cut in the membrane can be de-
scribed as a small width removed radially from the
circle when evaluating the MTF, and the resulting
information can be used to determine the largest us-
able diameter d for the hole in the center of the mir-
ror. Using the largest possible d will help lower the
radius of curvature of rolling the mirror around itself
because the roll will likely have the highest curva-
ture near the hole of the membrane. With only one
cut, the mirror can retain more stability than in the
multi-cut packaging scheme, but it obviously loses
some of the stability of the original, uncut mirror in
the umbrella and rolled folding patterns. Also, the
single cut mirror rolled around itself would easily re-
turn to its original shape when released into space
without the need of such elaborate support systems
as in the multi-cut model.

A matrix describing the usable surface of the aper-
ture can be generated and then sent to the MTF. A
generous width of 0.3 m was used to simulate the
single radial cut for the MTF in order to estimate
the maximum usable d.

The MTF’s of the matrix of an aperture with over-
all diameter 10 m and inner diameters of 5 m and
5.3 m are shown in Figure 13. According to the
MTF, a hole of diameter 5 m is acceptable, but black
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Figure 13: MTF of the aperture with D = 10 m and
(a) d=5m, (b) d= 5.5 m.

spots appear within the circle of the MTF for a di-
ameter of 5.3 m illustrating that this dimension is
not feasible. A similar result is observed if D = 20
m and d = 10 m and d = 10.7 m, respectively. The
maximum value of d for an aperture with a single
cut appears to be close to 0.5D as noted previously.
Hence, the single cut does not seem to greatly affect
the MTF.

Although the actual mirror would probably retain
a parabolic shape when rolled, estimates for the cur-
vature of rolling the mirror are quite easy to compute
when considering the overall shape as a cone. The
original curvature of the mirror is ignored when con-
sidering different lengths in the geometry of the cone
model (see Figure 14). To insure that the cone fits
within the rocket, R; (the radius of the base of the
cone) can be set equal to Ryocket. Furthermore, Ry
(the radius of the top of the cone) can be used as an
estimate of the smallest radius of curvature in this
packaging model. Thus it follows from properties of
similar triangles that

& _ R'rocket

d D
ds = Rp =~ Ry = %Rrocket~

Hence, the maximum curvature of rolling the mir-
ror around itself can be estimated using the known

Figure 14: The geometry of the cone model.

constraint of rocket size, the diameter of the over-
all mirror, the diameter of the hole in the aperture
found from the MTF, and simple geometry. Fur-
thermore, the inside of the rocket has known radius
R, ocket = 2 m, and an estimate for R; can be com-
puted using the results from the MTF. Hence, it
follows that

Rt%

O Ol

2.
2. 52 =1

=~
)

Finally, we note that Rp ~ 1.

One could consider other single cut packaging
methods, such as using a parabolic function instead
of a cone or stretching the mirror out into more of a
spiral. The parabolic idea does warrant more study,
but a spiral wrapping scheme may require curvatures
that are too large for presently accessible materials.

Discussion of Models

The estimated Rp values for various materials
were computed using the relation

1 A
t E\" D?
W ——=] —,
2Rr H 4t

from [1], where ¢ is the thickness of the aperture,
Rp is the radius of curvature of the folding model,
FE is the elastic modulus of the material, n is the
strain hardening exponent, H is the plasticity model
constant, D is the length of the surface being curved,
and w is a measure of deflection. The value of w

should be kept very low because the mirror will not
reflect properly after even small deformations. As a



Table 2: Minimum allowable radii of curvature for different materials and different widths for the cylindrical

roll, single cut, and multi-cut models.

| thickness (t) [ Rp for 2014-T6 Aluminum | Rp for I-400 Beryllium | R for 304 Stainless Steel |

10pm 0.0012 m 557.3210 m 0.1187 m
20pm 0.0026 m 3340.2 m 0.2990 m
30pum 0.0040 m 9520.7 m 0.5135 m
40pm 0.0055 m 20018 m 0.7535 m
S0um 0.0069 m 35627 m 1.0147 m

Table 3: Minimum allowable radii of curvature for different materials and different widths for the umbrella

model.

| thickness (t) [ Rp for 2014-T6 Aluminum | Rp for I-400 Beryllium | Ry for 304 Stainless Steel |

10pm 0.0012 m 312.8706 m 0.1051 m
20pm 0.0025 m 1875.1 m 0.2648 m
30pum 0.0039 m 5344.8 m 0.4547 m
40pm 0.0053 m 11238 m 0.6673 m
S0um 0.0068 m 20000 m 0.8985 m

t E

result, w = lum was deemed an appropriate esti-
mate of allowed deflection and was used to approx-
imate the minimum Rp value (or alternatively, the
maximum curvature, 1/Rp) that the specific mate-
rial can be shaped to hold without losing the nec-
essary properties of the mirror. For the single cut
and multi-cut models as well as the cylindrical roll
model, D can be estimated by the circumference of
the circle with highest curvature. Hence, in these
models, D = 27 Rp. The equation from [1] can then
be rewritten to yield

n

- () -
and therefore the minimum allowable radius of cur-
vature can be computed using thickness and material
properties. Using the outside loop of the umbrella
base curve model, the value D = %wRF can be used
to approximate the minimum allowed Rg for differ-
ent materials by noting that

t E %(gﬂRF)Q
- 4t

= ~ —=
(257@3%) 2Rp H

36tw\" 2H
:><257r2) B S

Using these equations and material constants from
[1], the minimum allowable radii of curvature for the
single cut, multi-cut, and cylindrical roll models for
different materials were computed and are summa-
rized in Table 2 for various thicknesses of the aper-
ture. Estimates for the minimum allowable radii of
curvature for the umbrella model are contained in
Table 3.

These values can be compared to the radii of cur-
vature needed for each model to fit within the rocket
to decide if each scheme is usable. As long as a par-
ticular Rg from the tables is smaller than the Rp
needed for a model, that material at that thickness
will work for the model being considered. For all
apertures that are 10-50 um thick, both aluminum
and stainless steel appear to be feasible materials if
using any of the presented models with appropriate
choices for the number of cuts in the multi-cut model
and for the number of folds in the umbrella model.
Beryllium does not appear to be an appropriate ma-
terial for the aperture, but the physical properties
of beryllium make it a less than favorable choice for
the mirror regardless of curvature. Adequate stabil-
ity of the aperture can possibly be achieved simply
by maximizing the thickness of the mirror within the



constraint that the radius of curvature of the model
is larger than the radius of curvature allowed by the
material.

Since the models are simplifications, physical test-
ing is definitely necessary. Despite some of the sim-
plifications with regard to original mirror curvature,
all models presented do warrant the further study of
physical models. The value for allowable deflection
of the mirror w should also be thoroughly tested and
may vary with material. Higher stability is achieved
by higher natural frequency, and further study with
these models with regard to natural frequency is sug-
gested as well. Also, more research on possible sup-
port structures for the mirror would help the analy-
sis of optimal mirror packaging.

Optical Considerations

When considering the packaging of a membrane,
the spatial frequency response of the resulting aper-
ture is a key performance factor. Assuming that the
optical system is diffraction limited and contains no
aberrations, one measure of the spatial frequency
response is the modulation transfer function (MTF)
given by [3]:

ffpl(f VP2 (€,m) d&dn

(fT?fJ) fj ’ dgdn
where
Pt = P (64 25 4 200
Ad; fo Ad;
Py(&,m) = <§— 2f N — 2fy>-

Here (£,7n) are spatial variables in the 2-D plane, A
is the wavelength, P is the pupil function, and d;
is the distance to the image. The pupil function is
a spatially-defined binary function which is identity
whenever the aperture exists and is zero elsewhere.
For example, a perfectly round primary mirror of
radius two will have a cylindrical pupil function of
radius one and height one.

The MTF for a diffraction-limited, aberration free
system defines the spatial frequencies that can be
resolved by such an optical system. Using the above
equation and applying it to a circular aperture of
diameter ¢ produces the MTF

-1, \_ P~ _ L
|ﬁOS (2ﬂ0 ) 2po 1 ( 2po

0, otherwise

3 o

N(p)

10

where
/

2Xd;

For the above case, a one-meter aperture at a Low
Earth Orbit of 500 km at a one-micron wavelength
can resolve 1 cycle per meter of resolution. This
value is the limiting aperture parameter being in-
vestigated. For most cases, an analytical solution is
difficult to calculate and the MFT must be found
computationally. The remainder of the analysis was
performed computationally using Matlab.

When determining the minimal spatial frequency
from the above example, noise has not been included
in the analysis. Generally, it can be assumed that
below some percentage of the peak MTF value, noise
dominates the optical resonance and spatial informa-
tion cannot be discerned. A value of 20% of the peak
value was used this paper, with comparisons made
to the ideal case shown above for a circularly filled
aperture.

All of the previously mentioned packaging schemes
were examed for impact to MTF performance. How-
ever, the multi-cut models [4] were found to be the
most difficult to analyze with respect to MTF per-
formance and had the most impact on optical perfor-
mance. No circular symmetry exists and the poten-
tial gaps in the aperture could create effective zeros
in the MTF. Therefore, only the multi-gap analysis
is shown.

For the multi-cut MTF analysis, three variables
were studied: obscuration size, number of cuts/gaps,
and angle of the gap. Each cut was placed symmet-
rically and each cut angle was the same for each
case.

Figures 15 and 16, respectively, illustrate the pupil
function and the resulting normalized MTF for a six

Po =

Figure 15: (a) Pupil function for 6-16 degree gap
aperture with a 10% obscuration.
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Figure 16: (a) MTF for Figure 15 pupil function.

16-degree multi-cut gap in the aperture with a 10%
obscuration. For the pupil function, the white areas
indicate where the pupil function is one while the
black areas indicate areas where no aperture exists.
The 10% obscuration in the middle was created to
accommodate an on-axis secondary mirror. For this
case, the spatial frequency cut-off was 84% of that
for a circular aperture with no gaps or obscuration.

For the study, the number of gaps was varied from
5 to 10, while the angle of the gap was varied from
5 until no aperture existed. The dependent variable
was the cut-off frequency divided by the cut-off fre-
quency for completely filled aperture with no gaps
or obscurations. Figure 17 shows the results of that
study. For equally spaced and equal-angle gaps, the
analysis showed a surprising trend — the gap angle
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Figure 17: (a) MTF percentage as a function of com-
pletely filled aperture versus total gap angle (10%
obscuration).

11

and the number of gaps could be combined into one
variable — the total radial gap angle. Figure 17 shows
the results for an obscuration of 10%. As the obscu-
ration increases, the curves half-bell-shape tended to
narrow, with more pronounced drops in the spatial
frequency percentage for smaller total gaps. In gen-
eral, this is due to the increased lack of aperture in
the center.
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