
A Parallel Tensor Product Implementation

(CSE260 Project Proposal)

Bryan Rasmussen ∗

10 October 2006

1 Introduction

The goal of this project is to write an efficient tensor product routine that
takes advantage of parallel computation in an intelligent, scalable way. At a
minimum, the routine must be able to compute the tensor products of two
rank-4 tensors of reasonable dimensions.

Recall that a tensor is a generalization of the concept of a linear operator.
When written with respect to a given reference frame (i.e., a basis), tensors
take on the form of multi-dimensional boxes of numbers. The dimensionality
of the box is known as the rank of the tensor, and the number of points
along each direction is called the dimension. Notationally, we represent
these boxes using indices, so, for example, we write a rank-3 tensor with
dimensions (3, 2, 5) as uijk, where i = 1, 2, 3; j = 1, 2; and k = 1, 2, 3, 4, 5.

In the scope of this project, we assume the existence of a standard basis,
so we do not concern ourselves with how the representation transforms with
a change in the basis. In particular, we do not distinguish between covariant
and contravariant indices. Therefore, as far as this project is concerned, a
tensor is simply a multi-dimensional array with a certain organizational
structure.

A tensor product is the most general bilinear operation possible between
two tensors. Considering tensors as multi-dimensional boxes, the tensor
product is the pairwise product of all elements in the first tensor with all
elements in the second, organized with a straightforward index inheritance.
For example, the tensor product of two vectors (rank-1 tensors) is the fa-

∗Los Alamos National Lab; bryanras@lanl.gov

1



miliar outer product,
u⊗ v = uv

T = uivj.

If u =
(

u1 u2 u3

)T
and v =

(

v1 v2

)T
, then

u⊗ v =





u1v1 u1v2

u2v1 u2v2

u3v1 u3v2





In general, the tensor product of a rank-m tensor with dimensions (d1,d2,
. . .,dm) and a rank-n tensor with dimensions (e1, e2, . . . , en) is a rank m + n

tensor with dimensions (d1, d2, . . . , dm, e1, e2, . . . , en).
This computation requires at least d1d2 · · · dme1e2 · · · en multiplications,

plus the requisite memory allocation and storage. The tricky part will be the
parallelization, particularly minimizing the inter-process communication. If,
at the end of the time allotted, there is a working piece of code that com-
putes tensor products of rank-4 tensors, has significant speedup, and scales
relatively well, then the project will be a success.

2 Schedule

Unfortunately from a scheduling standpoint, this project is Boolean—the
code will either work by the due date or it won’t. It is possible to make
some reasonable intermediate milestones, but we must always keep the final
goal in mind. With that caveat, a preliminary schedule is as follows:

Week 1 Serial implementation of tensor product. This could be just some
simple Matlab code, possibly even downloaded from the Internet.

Week 2 Working on parallelization.

Week 3 Preliminary parallel code. This will probably be inefficient.

Week 4 Somewhat final parallel code. There may actually be several ver-
sions that work better or worse depending on the types of tensors and
architectures of the system.

Week 5 Benchmarks and speedup computations.

2


