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Abstract

This paper describes a series of generic, parallel routines for the multiplication
of arbitrary-rank tensors with an arbitrary number of reductions. The routines can
generate pieces of the tensors on-the-fly using index transformations from matrices
to achieve significant savings in communications and storage. We test the routines
on a series of rank-4 tensors generated from 5-column matrices, and we demonstrate
that the algorithms can multiply large (17 million element) tensors with relatively
low memory and communication requirements. Numerical experiments indicate
that the algorithms scale very well in several measurements.

1 Introduction

The goal of this project is to write a parallel routine for multiplying tensors. To
measure success of the project, it is also necessary to compute efficiency and scaling
information.

Recall that a tensor is an extension of the concept of a linear operator to
multilinear algebra [11]. Tensors have many applications in disparate areas such as
fluid and solid mechanics, general relativity, and quantum mechanics [4, 8], and the
motivating application for this project is in computational chemistry [3, 6, 9, 10, 12].
A full treatment of multilinear algebra and continuum mechanics is beyond the
scope of this report, but we include a few simple definitions below for reference.

Given two vector spaces, Vi, and W,,, over the same field, with dimension m and
n respectively, there exists a natural operation called the tensor product, written
Vi @ W,,. This is essentially the outer product of all vectors in the two spaces—and
thus the dimension of the result is mn—but the product is taken while preserving
a notion of order in resulting bases, and this ordering is what distinguishes the
resulting space from a simple vector space. The elements of V,,, ® W,, are known as
tensors. We can continue to take more and more products, say, V,}Ll ®V,3L2 ®- - Vflk,
each time preserving the ordering. The number of products determines the rank
of the tensors in the resulting product space.

Recall from elementary linear algebra that for a particular choice of basis vectors
on a finite-dimensional space, every linear operator has a matrix representation.
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If A:V, — W, is the operator, and {e1,es,...,en} is a basis for V;,, then the
matrix representation is the familiar,

A= (Ae1 Aey - Aem) . (1)

A similar representation is available for tensors. For a given choice of basis
vectors, every tensor can be represented as a multi-dimensional box of numbers,
where the number of dimensions corresponds to the rank of the tensor. This
multi-dimensional box does not fully define the tensor, for it is still necessary to
maintain the ordering mentioned above in order to describe how the box changes
with changes in the basis. Nevertheless, the representation of tensors as multi-
dimensional boxes is convenient, as we shall see below.

The elements of the box may change with a basis in one of two ways: co-
variant or contravariant transformations. Any given tensor may contain a mix of
contravariant and covariant indices, which are typically represented with combina-
tions of subscripts and superscripts in the notational convention described below.
In the scope of this project, however, we assume the existence of a standard basis,
so we do not concern ourselves with transformations of the tensor representation
(which, by the way, is actually the most powerful aspect of multilinear algebra).

Therefore, for the rest of this report, we will think of tensors only as multi-
dimensional boxes of numbers with an organizational structure. For us, a vector
will be a rank-1 tensor, a matrix will be a rank-2 tensor, etc.

Notationally, we represent these boxes using indices, so, for example, we write
a rank-3 tensor w with dimensions {N;, N;, Ny} = {3,2,5} as wijx, where i =
{1,2,3}; j = {1,2}; and k = {1,2,3,4,5}. Tensors inherit most of the usual op-
erations such as summation and scalar multiplication from the field. Additionally,
one can multiply tensors in a variety of ways.

The most general operation between two tensors simply multiplies every pair
of elements to create a new tensor with a rank equal to the sum of the two original
ranks. For example, if u;j, is a rank-3 tensor and vmn is a rank-2 tensor, then
multiplying them creates a rank-5, tensor, which we write

Wijkmn = WijkUmn- (2)

If an expression contains one or more repeated indices, then it implies the
Einstein summation convention, which means that we sum over the repeated (i.e.,
“dummy”) indices. One repeated index in Eqn. (2) would result in a rank-3 tensor,
for example

Ny
Wijm = WijkUmk = Zuijkvmk, (3)
k=1
while two repeated indices would result in a rank-1 tensor, for example,

N; Ng

Wi = UijkVik = Z Z UijkUmk - (4)

i=1 k=1

This is sometimes known as tensor contraction or reduction.

To illustrate the subscript notation, consider column vectors u, v, and matrices
A, B, all over R%. The subscript notation for these entities is u;, vi, ai;, and b;;
respectively, where 4, j € {1, 2,3}.



It is possible to construct all manner of vector and matrix operations very
compactly using subscripts. The inner product of u and v is simply s = u;v;. The
outer product is w;; = u;v;. These derive directly from the definition,

3
T
$ = uiv; = E u;v; =u v, and (5)
i=1

U1v1  U1V2  UIV3
T
Wij = UiVj = | U201 U202 UV3 | = UV . (6)
u3vV1  U3vV2  U3vU3
Similarly, the notational equivalents of matrix-vector and matrix-matrix mul-
tiplication are v; = ajju; and c;x = a;;b;i, respectively:

a11v1 + a12v2 + a13v3

3
Vi = QijUu; = E aijv; = | a21v1 + a22v2 + az23v3 | = Au, and (7)
j=1 a31v1 + a32v2 + az3vs

3
Cik = aijbjr = E a;ibji =
i1

(aubu + a12b21> <a11b12 + a12b22> <a11b13 + a12b23>

+ a13b31 + a13b32 + a13b33
(a21511 + a22621> <a21bl2 + a22b22) <a2lbl3 + a22623>
+ a23b31 + a23b32 + a23b33
<a31511 + a32621> <a31b12 + a32b22) <a3lbl3 + a32623>
+ assbs1 + azsbsz + azzbss

= AB. (8)

As an exercise, the reader might convert some other familiar linear algebraic
operations such as ATB, ABT, and u” Av, into the subscript form.

Finally, by way of simplification, we assume that every tensor has a very com-
pact storage method called the k-index transformation. This means that a rank-k
tensor, v, with a maximum dimension of N will be completely represented with an
N x M “characteristic matrix”, z (where M is undetermined). The transformation
provides any element of the tensor using the formula,

M
Vijig..i — § Ziyj1Rigje " Riggk - )

Jij2.--Jr=1

This compact transformation becomes very important for minimizing storage and
communication costs in the parallel algorithm. We note that computational cost of
forming a single element of the tensor using Eqn. (9) is proportional to M*, so the
number of columns in the characteristic matrix can be a very important factor in
performance of a parallel algorithm. For the remainder of this report, we assume
relatively small dimensions, typically with M = 5.



2 Approach

In the current application, the tensors of interest are of rank-4, potentially with
very large dimensions. The specific forms of interest are

Wabij = UabefVefij,
Wabij = WijefVabef, and (10)

Wabij = UafieVbejf -

We concentrate on the following variation because it is simpler to program, and
moreover the others are equivalent after a re-ordering:

Wabij = UabefVijef - (11)

In fact, both the serial and parallel codes are more generic than Eqn. (11).
They actually operate on two tensors of any rank with any number of reductions.
The only restriction is that if p is the number of reductions, then the contracted
indices be the last p indices of both tensors, as in'

Waqas...ambiby...by = ualaz...amclcz...cpvblbg.4.bnclc24.4cp- (12)

It turns out that code for solving Eqn. (12) is not that much more complicated
than code for solving Eqn. (11).

2.1 Serial Algorithm

There are two common ways to write a serial tensor multiplication algorithm with
reductions. The optimal strategy is to “unwrap” each tensor into matrix form, so
for example, a rank-3 tensor with dimensions 2, 3, and 4 might be represented as
a 2 X 12 matrix with 2 x 3 blocks. We may then represent various forms of tensor
multiplication with block matrix multiplication, to which we may apply optimized
functions from the Basic Linear Algebra Subprograms (BLAS) available on the
computational platform.

We do not use this strategy here. Instead, we compute the tensor element-by-
element in a serial loop, using the algorithm outlined in Fig. 1. (Throughout this
report, we borrow the MATLAB colon notation to represent pieces of data objects.)
Although it is not completely efficient, this algorithm allows us to extend the code
to arbitrary-rank, arbitrary-reduction operations much more easily than if we had
to unwrap tensors. Also, it allows us to study the internal operations in detail and
split up the tensors more easily for parallelization.

The “index corresponding to i,j” lines in Fig. 1 mask a great deal of work. If not
handled carefully, these lines could consume more computation than the element
multiplications and summations themselves. We try to be as efficient as possible
by storing cumulative products and minimizing the modulo and division operations
involved in converting a single-scalar number into a list of indices. To illustrate, let
x be a vector containing cumulative products of dimensions starting at the outer
index and moving inward. If the dimensions of a rank-4 tensor are {3, 6, 4,2}, then
the corresponding vector is z = (48 8 2 1). Fig. 2 demonstrates the use of
this vector to update indices continuously with a minimum of computation.

IThis is a different convention from the interim progress report.



// Define some constants.

N = product of dimensions of C

R = product of dimensions of repeated indices
rankA = rank A

rankB = rank B

// Rank of C will be Apart+Bpart.

Apart = rankA-r
Bpart = rankB-r

// Loop over all elements in C.

for ii = 0:N-1
set idx = index of C corresponding to ii.

// Get parts of the index of A and B.

Aindex(0: (Apart-1)) = idx(0: (Apart-1))
Bindex(0: (Bpart-1)) = idx(Apart:end))

// Loop over all combinations of repeated indices.

val = 0
for jj = 0:R-1

set idx2 = repeated indices corresponding to jj.

// Fill out the rest of Aindex and Bindex

Aindex(Apart:end) = idx2
Bindex(Bpart:end) = idx2

val = val + A(Aindex)*B(Bindex)
end
C(idx) = val
end

Figure 1: Serial algorithm for multiplying C' = AB with r reductions



// Initialization

dims = list of dimensions
x = cumulative product of dims (out-to-in)
initialize idx to -1 in all elements

// Loop (inner or outer)

for ii=0:product(idx)-1

// Index computation

kk = length(idx)-1
while (kk > 0) AND ( (ii mod x(kk)) == 0)

idx(kk) = (idx(kk)+1) mod dims(kk)
kk = kk-1

end

end

Figure 2: Index computation in a loop



The serial algorithm is written in C4++. The code defines a new class called
bryTensor, which stores the data and characteristic matrix in double-precision
format in single arrays. It only allocates memory when necessary, such as when
loading data from a file.

In addition to the usual functions for access, resizing, input/output, etc., the
class contains a function, formit, that forms the entire tensor from a characteristic
matrix and another function, prod, that multiplies two tensors with reductions in
the form of Eqn. (12). The function formit accepts an offset as an argument, so
we may form only certain “rows”, i.e. sections with a fixed first index.

For example, consider a tensor a;j, with dimensions ¢ =1,2,3,4,5, j =1,2,3,
and k = 1,2,3,4. To access only the third and fourth rows, perform the following
steps:

1. Instantiate a tensor, bmnp, where m = 1,2, n=1,2,3, and p = 1,2, 3,4.
2. Load the characteristic matrix of a into b.
3. Call formit with an offset of 2.

The 2 x 3 x 4 tensor b now contains the third and fourth rows of the 5 x 3 x 4
tensor a. This ability to peel off individual rows of a tensor becomes important in
the parallel version.

The multiplication function, prod, is a straightforward serial loop, as discussed
above. Its arguments are two references to (not necessarily distinct) tensors and
a number of reductions. It overwrites the current object with the product of the
tensors and allocates memory if necessary.

To test the code, we generate several sets of tensors and characteristic matrices
of various sizes using random numbers. We test all the functions of the class,
including file loads, multiplication, and formation from characteristic matrices.
The results of the code agree with two other sources: 1) MATLAB routines written
specifically for testing purposes, and 2) a publicly-available MATLAB tensor package

1.

2.2 Parallelization

The literature contains several attempts at parallelization of tensor multiplication
since the late 1980s [5, 7]. One very sophisticated and difficult approach is to
generate optimal code automatically for each problem at the time of solution [2].
This is clearly a complicated undertaking and is beyond the scope of the current
project.

We seek instead to develop a strategy that trades optimality for robustness. A
few key assumptions simplify the multiplication in Eqn. (12):

1. All tensors can be formed from the k-index transformation, as in Eqn. (9).
2. The u and v are similar to each other in dimension and size.

3. The dimensions of the first indices of u and v are not small compared to any
of the other dimensions.

4. Each processor has enough memory to store one row of u, v, and w simulta-
neously.

With these assumptions in hand, the problem becomes one of properly dis-
tributing the rows of u and v among the processors. We choose distribute the rows
of w first, then distribute the rows of v.



To wit, let N, and N, be the number of rows of u and v respectively, and let
P be the number of processors. Then the distribution to processor n breaks down
into two cases:

o P < Ny:

In this case, each processor has to multiply one or more rows of u by all rows
of v. If P = N, /2, then each processor receives two rows of u; if P = N, /3, then
each receives three rows, etc. The difficulty is when P is not an integer division of
N,, and there are left-over rows to distribute.

If processor n receives I rows of u, starting at row i (zero-indexed), then i and
I are given by

it =n|Nu/P] + min{n, (N, mod P)}, and (13)

1 n < (N, mod P)

I'=[Nu/P]+ { 0 otherwise (14)

For example, u has 10 rows divided among 4 processors, then processor 0 oper-
ates on rows {0, 1,2}, while processor 2 operates on rows {6,7}. Remember that
all processors have to operate on all of v. When the number of processors grows
larger than N,, the distribution becomes more complicated.

o P> N,:

In this case, each processor is assigned to exactly one row of u, and all the
processors assigned to a given row then split up v among themselves. Processor n
is assigned to following row (i) of u:

n/(d+1) n<m(d+1)

= m+%(d+l) n>m(d+1) (13)

where m = (P mod N,), and d = | P/N,].

To determine what piece of v processor n receives, define two quantities: g and
Q. These are similar to n and P, except that they are local on a single row of w.
Specifically, @ is the number of processors on current row,

Q:{ d+1 n<m(d+1)

d  n>md+1) (16)

while ¢ is the rank of processor n among the processors assigned to the same
processor:

[n—m(d+1)]modd n>m(d+1) (17)

In a formulation similar to Eqns. (13) and (14) above, let j be the first row of v
that processor n operates on, and let J be the number of rows of v. The formulas
are

q:{nmod(d+1) n<m(d+1)

J=4q[Nv/Q] + min {q, (N, mod Q)}, and (18)

1 ¢< (NymodQ)

J=|N,/Q] + { 0 otherwise 1

For a visual depiction of the distribution, consider the plots in Fig. 3. These
show the numbered rows of u and v in columns and rows respectively. The rounded



rectangles represent the assignment area for a single processor. In the numbering
scheme described by Eqns. (13-19), the processor numbers start at zero in the top-
left and increase left-to-right, top-to-bottom. If it takes one unit of computational
work to multiply one row of u by one row of v, then the total amount of work
represented in Fig. 3 is N, N, = 30.

When P = 4, two processors are assigned one row of u each, and two are
assigned two rows of u each. All processors must multiply their rows by all of v.
The smallest workload on any given processor is 5, and the largest is 10. An ideal
distribution would give a maximum workload of 8.

When P = 14, two rows of u get three processors each, and four rows get two
processors each. The processors assigned to each row of u split up the workload
either {2,2,1} or {3,2}. The smallest workload on any given processor in this
situation is 1, and the largest is 3. Even with an ideal distribution, though, there
would still be at least one processor with a workload of 3.

Our distribution scheme is not perfect, and although it works well in practice,
there are situations, in which we must exercise caution. Consider, for example,
P = N, = 1000. Each processor operates on one row of u and one row of v. If we
increase P to 1999, then almost all rows of u are assigned two processors instead
of one. There will nevertheless be one extra row of u that is assigned to only one
processor. That single processor will dominate the computation time. In other
words, we will have nearly doubled the number of processors with no significant
improvement in performance.

We may avoid such bottlenecks by choosing P wisely. If P > N, then P should
be an integer multiple of Ny (Nu, 2Ny, 3Ny, ...). If P < Ny, then P should be
an integer fraction of Ny (Nu/2, Nu/3, Nu/4, ...). It does not help to choose P
between these values.

2.3 Parallel code

The code for the parallel algorithm is an extension of the serial code in C++. We
define a new class called bryTensorMPI that inherits most of the data and functions
from the previous class. It also contains data to represent the MPI state (process
ID, communicator, etc.), and functions for broadcasting, scattering, and collecting
either the whole tensor or the characteristic matrix.

The function that performs the calculations in Eqns. (13-19) actually stands
apart from the class. We expect that an end-user would call the function, then in-
stantiate objects based on the data that the function returns. It may be worthwhile
to place it under the bryTensorMPI class in the future.

The parallel test program has two modes: memory-efficient, and process-ef-
ficient. The reason for the two options goes back to our assumption that each
processor need only store one row each of u, v, and w. If we adhere strictly to this
dictum, then if P < N,, a processor may have to form all the rows of v as many
times as it has rows of u. For example, if a processor is assigned 4 rows of u, then
it will have to form each row of v close to 4 times. (We may reduce the number of
formations slightly by sweeping backwards and forwards in the nested loops shown
below.)

Setting the program to process-efficient mode causes each processor to generate
its entire piece of u, v, and w simultaneously. This mode saves extra formations at
the cost of increased memory requirements. As such, it may be of limited utility as
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Figure 3: Distribution for N,, =6, N, =5, with P =4 (top) and P = 14 (bottom)
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the size of the tensors grows. It does lead to some very interesting scaling results,
however—see Sec. 3.

(Note that if P >= N,, then each processor is assigned only one row of u, so us-
ing memory-efficient mode does not penalize the run times. Numerical experiments
have confirmed this observation.)

The parallel code test program only uses the broadcast capability of the class.
The general procedure is the following;:

1. Get MPI information.
2. Call the function to determine the rows of u and v that this processor will
operate on. Store these in vectors x and y respectively.
3. Instantiate tensors of the proper size.
e If in memory-efficient mode, this is one row each of u, v, and w.
e Otherwise, it is the entire piece of v and v upon which this processor
operates.
4. Load the characteristic matrices for v and v.
e If this is the root processor, load from a file and broadcast to other
processors.
e Otherwise receive the broadcast.
5. Form and multiply pieces of u and v from their respective characteristic ma-
trices.
e If in memory-efficient mode, use the following algorithm:
for ii=0:length(x)-1

form row u( x(ii) ,:,:, ... ,:)
for jj=0:length(y)-1

form row v(y(jjd),:, ... ,:)

multiply u(x(ii),:, ... ,:)*v(y(Gj),:, ... ,:)
end

end
e Otherwise, form entire pieces of u and v assigned to this processor and
multiply. That is,

form u(x(:),:, ... ,:)
form v(y(:),:, ... ,:)
multiply u(x(:),:, ... ,)*v(y(C:),:, ... ,:)

Note, too, that we promptly discard each piece of the tensor after we calculate it.
In a real application, it would be necessary to do something with the result. Exactly
what depends on the application of course, but almost certainly it would involve
large amounts of communication, memory, and possibly disk access. Therefore,
in order for the tensor multiplication code in this paper to be useful in practice,
it must eventually contain efficient communication and storage routines that are
tailored to individual applications. The timings reported in Sec. 3 might eventually
constitute a relatively small part of the overall computational effort.

3 Results

We test the parallel code on the DataStar platform at the San Diego Supercom-
puter Center. We experiment with the multiplication of two rank-4 tensors with
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Table 1: Weak scaling studies
P N, Off-dim. Time (s)
128 256 16 133.30
512 512 16 132.99

16 16 16 4.51
64 32 16 4.45
256 64 16 4.48
4 32 16 67.33
16 64 16 67.41
64 128 16 67.02
256 256 16 67.64

dimensions N, x 16 x 16 x 16, or N, X 32 x 32 x 32, where N, varies from 16 to
512. (Hereafter, we assume that any two tensors being multiplied have identical
dimensions, so we just write N, for the number of rows.) The dimensions of the
indices other than the first index (i.e., 16 and 32 above) are known as the “off”
dimensions in the discussions of this section. In all experiments, the characteristic
matrices of the tensors are N, x 5, uniformly-distributed random numbers in the
interval [—1.05, 1.05]. A complete, sorted list of parallel runs is in Sec. 5.

We vary the number of processors from 4 to 512 in order to study scaling effects.
Fig. 4 shows computation time as a function of N, for both choices of off-dimension.
Each line represents a constant number of processors. All of the lines are generated
using memory-efficient mode except for two.

Fig. 5 shows vertical slices of the Fig. 4. Each curve represents a different value
of N, and decreases according to an increasing number of processors. Note the
sawtooth pattern in the N, = 32 curve of the top plot. This is a demonstration
of the effect—mentioned Section 2.3—that it does not pay to increase P unless we
increase it in specific quantities.

In general, the method appears to scale very well. We use two methods to
measure scaling. In the first, we try to obtain “weak” scaling results by increasing
the number of processors with the size of the problem. This can be difficult to do
properly because the size of the problem increases with N2, and thus we quickly
run out of processors. Tab. 3 shows three sections of data in which the number
of processors increases with the square of the number of rows. All runs are in
memory-efficient mode.

The second method for calculating scaling information is to fit the curves of
Fig. 4 in the least-squares sense with a power law, T = ay”, where T is time as
plotted on the vertical axis. For a perfect scaling, we expect the exponent to be
approximately 2. Tab. 2 contains fits and residuals for all curves. The curves in
memory-efficient mode (including all data when P > N, ) have exponents that are
actually smaller than 2. This is probably due to a shrinking contribution from the
characteristic matrix load and broadcast in the timing total.

Process-efficient runs, on the other hand, exhibit some surprising behavior in
Fig. 4 and Tab. 2. Timings actually grow sub-linearly with the workload, to the
point where 64 processors running in non-memory-efficient mode are almost as fast
as 128 processors in memory-efficient mode when N, = 128!
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Table 2: Power-law fits of time vs. N, curves

P Off-dim. Mem.-eff.? Exponent Residual

32 32 yes 1.9851 155
256 32 yes 1.9948 8.1
512 32 yes 1.9877 7.1
16 16 yes 1.9766 11.3
16 16 1o 1.1336 0.2
64 16 yes 1.9894 0.2
64 16 1o 1.0857 0.0
128 16 yes 1.9848 0.2
256 16 yes 1.9939 0.2
512 16 ves 1.9815 0.2

The explanation for this sudden reduction is two-fold. First, we note that it is
not surprising that the process-efficient calculations are faster because they require
less formation from characteristic matrices. For example, if N, is a multiple of P,
say N, = tP, then memory-efficient mode requires us to form v a total of ¢ times,
compared to once in process-efficient mode.

By itself, however, the reduced formation requirements are not enough to ac-
count for sub-linear growth in process-efficient mode. That phenomenon results
from the relative differences between sizes of the pieces of tensors being multiplied.
Recall that when P < N,, each processor must operate on one or more rows of
u, but all of v. Therefore, the full formation of v costs much more computation
time than does the formation of a small piece of u. When we double N, and N,,
we increase the total size of the problem by a factor of four, but we only increase
the cost of forming v—and this is the term that dominates the computation—by
a factor of two. Thus, the total cost in process-efficient mode only slightly more
than doubles with a doubling of N, and N,.

Eventually, as N, grows large, the number of processors will become small
compared to N,, and the scaling exponent will increase back to 2. Long before
that happens, though, any modern system would run out of memory and process-
efficient mode would be unavailable anyway. We conclude that while the sub-linear
growth is an interesting feature of process-efficient mode, memory constraints would
probably prevent its use for large, practical problems.

4 Discussion and future work

Despite its simplicity, the tensor multiplication code seems to be very robust, effi-
cient, and scalable. Using 512 processors, we can multiply two 17-million-element
rank-4 tensors with two 32-element reductions, all in less than 20 minutes. Scal-
ing results are essentially perfect over the ranges considered, and the code has a
relatively simple object-oriented interface.

Practical and fundamental experiments indicate that, despite the need for cau-
tion, the load balancing system is actually very good. It seems at first glance
(especially given the sub-linear growth in process-efficient mode) that breaking up
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both v and v so that each processor gets roughly the same size of each might be
a better strategy. In the end, though, tensors u and v must be split into con-
tiguous pieces to be distributed among processors. If we were to break up u and
v simultaneously instead of sequentially, then memory-efficient mode would re-
quire many extra formations compared to the current setup, and formation—mnot
multiplication—is the primary sink for computational resources. While it would
be possible to improve process-efficient mode with different splittings, that mode
is probably not useful for large tensors.

Some other improvements are immediately apparent, however, and one obvious
place is in the k-index transformation. The reader has probably noticed that
Eqn. (9) implies a large amount of symmetry. Indeed, any permutation of the
indices of a tensor derived from Eqn. (9) will give the same value, as long as the
values of the indices are within the allowable dimensions. The current code does
not take advantage of this fact. If it did, we could potentially save large amount
of both memory and computation time. For example, an n X n symmetric matrix
only requires about half the storage space as a non-symmetric one, while a rank-4
tensor with index-permutation symmetry can reduce storage by a factor of 8.

Another place to improve the code is in the low-level multiplication itself. Sec. 2
outlines a technique for “unwrapping” the tensors and using matrix operations.
This is a standard trick that could easily aid the serial and parallel codes, if done
properly.

Finally, as mentioned at the end of Sec. 2.3, the multiplication per se may
not be the limiting factor in an application that requires multiplication of large
tensors. In order to use the code in a practical problem, it will be necessary to
attach many more functions for handling post-processing and storage of the tensors
being multiplied.

5 Appendix: Output of parallel runs

The following table contains the reduced output of the parallel runs on DataStar.
The form of the tensor multiplication in each case is Wijmn = UijefUmnes. The
“Load” time is the time required to load and broadcast the characteristic matrices.
The “Comp.” time is the time required to do the computation.

P i j m n e f  Mem. Load Comp. Total
eff.?  (s72) (s) (s)

4 32 16 32 16 16 16 y 0.1 67.3 67.3
8 32 16 32 16 16 16 y 0.1 34.3 34.3
16 16 16 16 16 16 16 y 0.0 4.5 4.5
16 16 32 32 16 16 16 y 0.0 9.2 9.2
16 16 48 48 16 16 16 y 0.1 14.3 14.3
16 16 64 64 16 16 16 y 0.1 19.1 19.1
16 16 96 96 16 16 16 y 0.1 30.4 30.4
16 16 128 128 16 16 16 y 0.2 42.6 42.6
16 24 16 24 16 16 16 y 0.0 13.0 13.0
16 32 16 32 16 16 16 n 0.0 9.2 9.2
16 32 16 32 16 16 16 y 0.0 17.2 17.2
16 48 16 48 16 16 16 n 0.1 14.0 14.0
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16
16
16
16
16
16
16
24
32
32
32
32
32
32
32
40
48
56
64
64
64
64
64
64
64
72
88
96
128
128
128
128
128
256
256
256
256
256
256
256
256
256
256
256
256
512
512
512
512
512

48
64
64
96
96
128
128
32

16
32
64
64
128
32
32
32
16
32
64
128
128
256
256
32
32
32
32
64
128
256
256
32
32
64
64
128
128
256
256
512
512
512
512
32
32
64
64
128

16
16
16
16
16
16
16
16
32
32
32
32
32
32
32
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
32
16
32
16
16
32
16
32
16
32
16
32
16
32
16
32
16

48
64
64
96
96
128
128
32

16
32
64
64
128
32
32
32
16
32
64
128
128
256
256
32
32
32
32
64
128
256
256
32
32
64
64
128
128
256
256
512
512
512
512
32
32
64
64
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16
16
16
16
16
16
16
16
32
32
32
32
32
32
32
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
32
16
32
16
16
32
16
32
16
32
16
32
16
32
16
32
16

16
16
16
16
16
16
16
16
32
32
32
32
32
32
32
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
32
16
32
16
16
32
16
32
16
32
16
32
16
32
16
32
16

16
16
16
16
16
16
16
16
32
32
32
32
32
32
32
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
32
16
32
16
16
32
16
32
16
32
16
32
16
32
16
32
16
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WYY EYEY PP EYY<YY<YHYEYEKY BEYNY<Y<YYYXY B BEYYY<Y<X<YXK<Y<YiBEBEYY<Y<YX<Y< B<YBE<Y B<

0.1
0.1
0.1
0.1
0.1
0.3
0.1
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.1
0.1
0.9
0.1
0.0
0.0
0.1
0.3
0.9
0.2
1.0
1.1
0.1
0.1
0.1
0.3
0.3
0.2
0.5
0.4
0.1
0.4
0.1
0.1
0.4
0.5
0.3
0.4
0.5
0.7
0.5
0.1
0.2
0.1
0.3
0.1

38.1
19.1
67.4
30.6
151.0
42.6
267.6
17.0
4.2
6.2
19.2
70.8
149.3
277.7
1102.2
7.5
8.6
8.5
1.4
4.5
17.0
34.7
66.9
73.8
266.4
4.3
4.4
3.1
2.6
8.5
33.5
68.9
133.3
10.5
1.3
36.3
4.5
16.9
138.9
66.6
549.0
137.6
1166.5
265.9
2191.8
0.8
6.2
2.5
18.9
8.6

38.1
19.1
67.4
30.6
151.1
42.7
267.6
17.0
4.2
6.2
19.2
70.8
149.3
277.7
1102.2
7.5
8.7
8.5
1.4
4.5
17.0
34.8
67.0
73.8
266.5
4.5
4.4
3.1
2.6
8.6
33.6
69.0
133.3
10.6
1.3
36.3
4.5
16.9
138.9
66.6
549.0
137.6
1166.5
266.0
2191.8
0.8
6.3
2.5
18.9
8.6



512
512
512
512
512

128
256
256
512
512

32
16
32
16
32

128
256
256
512
512

32
16
32
16
32

32
16
32
16
32

32
16
32
16
32
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0.3
1.2
0.5
0.7
0.7

69.8
33.4
272.9
132.9
1085.7

69.8
33.6
272.9
133.0
1085.7
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