Machine Learning: Fitting Predictive Models to Data

m Observe two correlated “processes” X=

e Process that produces data samples x € X

e Process that provides labels y €¢ Y
m Find a predictor function f : X — 'Y Y=

e Given a sample x from the data process,
use y = f(x) to predict the associated label y.

m Maybe you want to understand something about the processes. ..
or maybe you just want to make successful predictions in the future

m It is traditional to make assumptions about the processes

e linear, gaussian, deterministic, simple, etc.

e ... but it is not necessary.
m Obtain a training set of data: (x;,y;), i=1...m

e Assume: the training data are representative of the processes
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The machine learning problem(s)

m “Processes” described by a probability distribution P over the space X X Y

e X =data; in general, quite arbitrary, but usually X is R4
e Y =labels

o Binary classification: Y is {—1,1}

o K-ary classification: Y is {1,... K}

o Regression: Y is usually R

m P(X,Y) is not known, but...

e what is available is a data set (x;,y;), i=1...m
e which is assumed to be randomly sampled from P(x,y)

e usually assume independent samples: 11D
m Infer properties of the distribution, conditioned on x € X

e Infer distribution itself: estimate f(y,x) = P(y|x)
e Regression: estimate f(x) = E(Y |x) = /Y yP(y|x)dy

e Classification: estimate f(x) = argmax, P(y|x)
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Other machine learning problems

m Transductive learning

e Given one (small) data set (x;,y;), i = 1...m, sampled from the distri-
bution P(x,y), and a second (generally much larger) data set without
labels x;, j=1... M, build a model for regression, classification, etc.

m Unsupervised learning

e Given only data without labels x;, i = 1...m, infer properties of P(x)
— eg, estimate of number of modes in a multimodal model.

® Anomaly detection

e Given a set of data without labels x;, i = 1... m which is presumed
“normal,” and a second set of unlabelled data x;, j=1... M, identify
the (presumed rare) elements of the second data set which are not
normal.

m Confidence machines

e Build a model that not only guesses the data point’s classification, but
which also produces an estimate of the probability that that point is
correctly classified. (“sixty percent chance of rain”)
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Classifier performance

m Generalization error expresses performance on “future” data

Elf] = [I(y # f(x))P(x,y)dx dy
e where I(-) is the indicator function;
it is one if its argument is true, zero if false.
e Optimal solution f* = argmin; E[f| given by f*(x) = argmax, P(y|x)
o produces minimum error (aka “Bayes error”); not necessarily zero

o requires knowledge of P(x,y)

m Empirical or Training error is based on in-sample performance
E; =3 I(y; # f(xi))

e Can be evaluated over training data: (x;,y;),i=1...m
e Choosing f(x) to minimize E; will not necessarily minimize E

o If E,[f] is estimated with the same data used to fit the predictor f,
then E.[/f]| will be a biased estimator of E".

m Overfit: try “too hard” to fit training data and generalization suffers.
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The Probably Approximately Correct (PAC) Approach

m Valiant (1984): Produce a model of the data that...
... with probability 1 — ¢
... Is accurate to within ¢

. . . using computation that is polynomial in 1/§ and 1 /e.
m Why not probability one?

e The finite training set is randomly sampled from distribution P(X,Y).
With some probability ) < 1, the random sample will be unrepresenta-
tive of the distribution.

m Avoids the Bayesian Nightmare
e Probability is P(data|distribution), Not P(distribution|data)
m No Free Lunch Theorems (Wolpert 1992, 1995, 1996)

e No reason to expect one learning algorithm to be better than another
e unless you make assumptions about the “uniformity of nature”

e prior assumptions about P(distribution).
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PAC and Boosting

m Strong learning: For any ¢ > 0 and any ¢ > 0, and access to an unlimited
number of data samples, find a function f(x) such that

e With probablity 1 — ¢
e solution is accurate to within ¢; ie, P(y # f(x)) < ¢

e In a number of steps that is polynomial in 1/§ and 1 /¢ and the number
of data samples employed.

m Weak learning: Replace “any ¢ > 0” with “some ¢ < 1/2”
m Boosting

e Kearns and Valiant posed the question: could a “weak” PAC learner
be “boosted” to a “strong” learner

e Schapire constructed first provably polynomial-time boosting algorithm
The strength of weak learnability. Machine Learning 5:197-227, 1990

e Many improvements followed. ..
m Note: no assumptions made about underlying distribution P(X,Y)

e Any weak learner can be boosted to a strong learner

I [ 0s A lamos National Laboratory =



AdaBoost

m Given data: (x;,y;),i=1...m; where x; € X, y; € {—1,1}
m And a family of “weak learners” h € H; where h: X — {—1,1}
e More general variant: h: X — R
m Start with initial distribution of weights: w’ = 1/m
mFort=1,....T
e Find weak learner h; that minimizes weighted error:
€t = ZI: w; I(yi # ht(Xi»/zj: W}
e Assign weight o, to the learner

o Larger weights assighed to learners with smaller errors

1 1-
o Usually, but not necessarily: o = Eln( Et)
€t
e Adaptively reweight the data points: w!™! = w{exp(—a;y;he(x;))

o Note that the data points which were badly estimated this time
with be more heavily weighted the next time.

T
m Final estimator: y = H(x) = sign (Z Oétht(X))
t—1
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PAC and Support Vector Machines

m Linear decision function: f(x) = %x + (3, AE

m Classifier: y = sign(f(x))

m SVM loss function
1
L(ﬁ)ﬂO) = EﬁTﬁ_‘_ Cz.:gi

|
o where ¢; = max(0, 1 — y;f(x;)) i ° b yf(x)

e convex e margin

m Optimization with bounded effort: quadratic programming (QP) problem
e Solution has the form f(x) = (Z a,-y,-xiT) X+ fo =X aiyi (x?x) + Go

m Bounded generalization error

e based on Vapnik’s amazing theorem: with probability 1 — ¢,

v(log(2m/v) + 1) — log(6/4)

ESEt_i‘J

e where v is the VC dimension: v ~ |3|?
e Independent of distribution P(X,Y)

e Valid for all m
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Kernels and Support Vector Machines

m Enables SVM to learn highly nonlinear decision surfaces
m Map data to a (usually) higher-dimensional feature space ¢ : X — F
TR
x

e For example: ¢(z) = 2

m Nonlinear f(x) = f¢(x) + [, is linear in feature space F
m Do SVM algorithm (QP problem) in feature space
e But not directly, feature space is too high-dimensional
e Observe that QP algorithm only involves dot products: ¢(x)%¢(x')
e Define kernel function: K(x,x') = ¢(x)T¢(x’)
m Solution has the form: f(x) = a;yiK(x;, x) + 5o
e Often, solution is sparse: many values of o; are zero
e Data x; corresponding to nonzero «o; are “support vectors”

m Trick: choose mappings ¢ which lead to convenient kernels
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Using Spatial Information in Multispectral Classification

m Ignore spatial properties entirely, and use purely spectral methods

e max likelihood, min distance, Fisher discriminant, SVM, etc.

e k-means and EM for unsupervised classification

m Process local spatial features into scratch planes
And treat scratch planes as extra spectral channels

e Texture features (Gabor, Laws, etc)
e Morphological operators (erode, dilate, etc)

e Adaptive/Online feature selection (Genie, Afreet, Grafting, ...)
m Use contiguity property as part of the cost function

e Markov Random Field methods

o Bayesian interpretation, MCMC computation, Gibbs sampler,
texture synthesis, simulated annealing, various nightmares. ..

e Direct minimization of the cost function
o contig-SVM for supervised

o contig-k-means for unsupervised
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“Online” feature selection

m lterate:
e Spatio-spectral features created by applying short “pipelines” of ele-
mentary image-processing operators to the data
o various convolutions: smooth, Sobel gradient, Gabor filter, ...

o morphological operators: erode, dilate, open, close,...

o spectral features: band ratio, band difference, clip, threshold,. ..

e Fixed number of “scratch planes” hold currently employed features
o Features are always spatially local
e Pixel-by-pixel classifier applied to scratch (and, optionally, data) planes

o Pixels treated as independent samples

o Fisher discriminant, support vector machine, etc.

e Based on performance, go back and choose new features
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Contiguity Property for Images

® In remote sensing, what is of interest on the ground is usually much larger
than a pixel

e especially terrain categories: lakes, forests, beaches, vegetation
canopies, agricultural fields, golf courses. ..

e few exceptions: sub-pixel beacons, narrow roads

m Pixels are not IID samples!

e Two adjacent pixels are more likely to come from the same class
than are two pixels chosen at random from the image.

e This is an almost universal property of images

e How to quantify, how to exploit?
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Markov Random Fields

m “If there was something called a noncausal 2D autoregressive model, MRF
would be called that.” — Murat Dundar

m Bayesian Image Analysis

e Prior: P(I) is distribution over all possible images,
not having seen the data

e Data: D is an observed image
o Think I=idealized, D=dirty

e Likelihood: P(D|I) is probability of observing data D,
given that the true image is I

e Bayes Rule: P(I|D)= P(D|I)P(I)/P(D)
e Maximum a posteriori: I,,, = argmax; P(D|I)P(I)
m MRF is a prior that encourages adjacent pixels to be alike
e Product of pixel probabilities: P(I) = IT;;Pj;(x;j)
e Pixel probabilities only depend on neighbors (Markov property)

Pii(x;5) = P(xij|Xizai jraj)
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MRF'’s for texture synthesis

m No data; generate realizations of idealized images consistent with P(I)
m Algorithm begins with idealized image: x € {—1,1}
e Smooth image: X1{ =) WAiXitAj
Ai
e:l:ﬁx’
elx' + e=rx

e Resample image probabilistically: P(x =+1) =
e lterate
m Characteristic properties of image “texture” a tradeoff

e Strength and nature of smoothing: wy;

e “Temperature” (1/3) of probabilistic resampling

Left panel: Average over many trials; Right panel: single realization.
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Markov Random Fields (cont’d)

m Prior is MRF: P(I) = Hiijj<Xij) = HijP(Xij’Xi:I:Ai,j:I:Aj>
m Likelihood model: P(D‘I) = HijP(dij‘Xiﬂ
o Let V,:j(X,'j) = —log P,:j(X,'j) — log P(dﬁ‘Xﬁ), so then
P(D|I)P(I) o exp (— > Vii(dy, Xij)) = exp (— > V(djj, xij, XiiAi,jﬂ:Aj))
1j 1J
® Invoke thermodynamic analogy

e Call it a Gibbs distribution

e Introduce a temperature T
PDIDPID o (-5 Vidy. xy,x1.15:47)/T)
ij
e and note that as T' — 0, we have
[P(D|DPI)Y™ — 6(I = )
m Use Markov Chain Monte Carlo (MCMC) to explore space of images I
distributed according to exp(—V (D, I)/T).

e Anneal T — 0, and converge I — I,,,s.
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Markov Random Fields (an alternative viewpoint)

m A lot of hullabaloo: I, = argmin;V (D, I).
m Take a closer look at V (D, I); typically

V(D7 I) — Z VDATA(dij7 Xij) + VCONTIG(Xij7 Xi:l:Ai,j:l:Aj)

ij
e V.. is penalty for label to disagree with data

e Vi onrc IS penalty for neighboring pixels to have different labels

® You can ask the practitioner to adopt a Bayesian point of view,

e produce an MRF that is appropriate for the imagery at hand,
e produce a model for likelihood of data given a label, and

e spend hours of computer time on huge MCMC runs. ..
m Or you can ask for two cost functions:

e V..n(d, x) expresses the cost of label x when the data is d

e V.onric €xpresses the cost for neighboring pixels to have different labels
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Contiguity and Support Vector Machines

m Add a simple V¢ term to the SVM loss function

e Quadratic term does not affect mathematical structure of loss function,
so SVM algorithm can still be used
e Provably bounded computation to find optimum

e Inherit SVM’s resistance to overfitting(?)

e Contiguity term does not require labelled data

m For linear SVM, effect of contiguity can be expressed as

e Linear preprocessing of data: z = D;l/zx, or

e Modified linear kernel: K(x,x') = x"D;'x’
o Suggests interpretation of contiguity property in terms of an

invariance-preserving kernel, as advocated by Scholkopf and Smola,
Learning with Kernels, Chapter 11.

o Solution should be “approximately” invariant to the operation of
moving to a neighboring pixel

m Method can also be employed for nonlinear kernels
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Contiguity and Linear Support Vector Machines

m Decision function: f(x) = Tx + 3,
m Ordinary SVM loss function
1
L(8,8,) = 5878+ C X<
e where ¢; = max(0, 1 — y;f(x;))
m Contiguity cost

Veonrie(Xi, Xitai) = § f(x;) — F(xi1a1)|? = %ﬂT(Xi — Xini) (X — Xi400) 18
m Contiguity matrix

D= 2 ¥ )( )T
= —— Xi — Xi+Ai)(Xi — Xi+Ai
NNAj i1 ai 4 4

e where N, is number of neighbors (we use Ny = 8)

e weighted neighborhoods would be a straightforward generalization

m Contig-SVM loss function
1 1
L(8,80) = 5875+ Ces+ 5xBTDY
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Linear contig-SVM (cont’d)

m Loss function 1 |
L(B, ) = 5678+ C S ei+ k6 DY

elet \=x/(k+1)and C*=(k+1)C, and
e Let Dy, = AD + (1 — \)I be “regularized” contiguity matrix

m Rewrite loss function

L(B,00) = 50" Dib + C"Xey

m Regularized contiguity matrix is positive definite: write D, = UA,\U7T
o let 3* = DI/?8 = UAY?UT3, and
o let z = ¢(x) = D;l/zx = UA;I/ZUTX

® Then loss function becomes

L(5",fo) = 5875+ C'S e

m Solution: f(x) = (Z a,-y,-xiTDA_l) X+ fo = 2 aiyi (xiTD;1X> + Bo
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Kernelized contig-SVM

m Map x — ¢(x)
m Contiguity matrix in mapped space:

2 N

D? = NNa El AZj((b(Xi) — O(xi:a1))(0(xi) — P(xi1a1)) T

m Want use contiguity enhanced kernel
KCONTIG(X7 X/) — gb(X)TDf_lgb(X,)
e But need to evaluate K (X, x’) without evaluating ¢(x) directly.
e Can’t evaluate ¢(x), but can evaluate K(x, x') = ¢(x)T¢(x')

o this is just the ordinary (non-contig-enhanced) kernel

o For convenience, also write K;; = qb(Xi)Tqb(Xj)

e Need to express K o(x,x') in terms of K(x, x')

m Question: can we preprocess the data and then just use the ordinary kernel?

e Answer: | don’t think so
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Simpler (but untested) idea: contig-LDA

m Linear Discriminant Analysis (e.g., Fisher discriminant)

e Data x; and associated class label y;
o Class means: x, =3 1y, _yX;/> 1y,
1 1
e Within class covariance: Sy, = >(x; — xy,)(xi — xy.) 7T
1
e Between class covariance: Sy, = Z,(xy — Xy ) (X5 — xy/)T
Y.y

e Discriminant functions: f(x) = 3Tx
o Want small within-class 51S,,3 and large between-class: 31S,5.
o e.g., max 51S,3 subject to 3TS,, 5 = 1.
o Discriminant(s) given by largest eigenvector(s) of S_'S),
m Now add a contiguity term

e Want small Y3 |f(x;) — f(xi;a;)|%; that is: small 3TDg
i Ai

e Suggests choosing eigenvectors of ((1 — \)S,, + AD) 'S,
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Contiguity and Unsupervised Classification (clustering)

m k-means (Lloyd, 1958)

e Class labels assigned to pixels: x;; € {1,...,K}
e Class means dk = Z dij(5<Xij, k)/Z5<Xij, k)
— 7

1

e Minimize in-class variance: Vo, (djj, x5) = (djj — dy;;)°

m contig-k-means (Theiler and Gisler, 1997)

e Introduce a penalty term for “discontiguity” among the labels

Veonne(Xij, Xit Ai jrAj) = HJAZA.(l — 0(Xij, Xit AL j+Aj))
1’ J

o where « is the xnob that adjusts the relative importance of contiguity
compared to in-class variance

o For example: E\ Veonrie(Xij) = 5K

e Produce an iterative k-means-like algorithm to minimize

V(D, I) — Z VDATA(dij7 Xij) + VCONTlc(Xij7 Xi:l:Ai,j:I:Aj)

ij
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Contiguity vs. Compactness

0.25
m Multispectral Landsat-TM imagery

A=0 =——m contig-k-means

® 3x3 smoothing

m Seven-band 151 x151-pixel image
of Hatch, New Mexico

o
N

© NxN smoothing

m Segmentation into K = 4 classes

(dis)Contiguity
o
|_\
(6)]

e from 56 bits/pixel to 2 bits/pixel

0.1

m Can substantially enhance contiguity
at minimal cost to in-class variance

0.3 0.35 0.4 0.45
(non)Compactness

I [ 0s A lamos National Laboratory =



Conclude

m Many remote sensing problems can benefit from machine learning tools

e In many of these problems, Image Analysis plays a central role

Tool(s): o Image o Problem(s):
Machine Learning Analysis Remote Sensing

e But images are not collections of independent pixels
m Focus-of-attention problems
m Use of Spatial features

e Select from a large pool of potential features

e Online schemes for “growing” successful features

m Exploitation of Contiguity property

e Markov Random Field approaches
e Direct use of discontiguity penalty function: Vg ~ |f(x;) — f(xi:a5)|P
o Convexity is a virtue: p > 1 o Robustness is a virtue: p <1

o Preserving mathematical structure is a virtue: p=2
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