
Machine Learning: Fitting Predictive Models to Data

Observe two correlated “processes” X=

Y=

• Process that produces data samples x ∈ X

• Process that provides labels y ∈ Y

Find a predictor function f : X → Y

• Given a sample x from the data process,

use ŷ = f (x) to predict the associated label y.

Maybe you want to understand something about the processes. . .

or maybe you just want to make successful predictions in the future

It is traditional to make assumptions about the processes

• linear, gaussian, deterministic, simple, etc.

• . . . but it is not necessary.

Obtain a training set of data: (xi,yi), i = 1 . . .m

• Assume: the training data are representative of the processes
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The machine learning problem(s)

“Processes” described by a probability distribution P over the space X ×Y

• X=data; in general, quite arbitrary, but usually X is Rd

• Y=labels

◦ Binary classification: Y is {−1,1}

◦ K-ary classification: Y is {1, . . . ,K}

◦ Regression: Y is usually R

P(X ,Y ) is not known, but. . .

• what is available is a data set (xi,yi), i = 1 . . .m

• which is assumed to be randomly sampled from P(x,y)

• usually assume independent samples: IID

Infer properties of the distribution, conditioned on x ∈ X

• Infer distribution itself: estimate f (y ,x) = P(y |x)

• Regression: estimate f (x) = E(Y |x) =
∫

Y
yP(y |x)dy

• Classification: estimate f (x) = argmaxy P(y |x)
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Other machine learning problems

Transductive learning

• Given one (small) data set (xi,yi), i = 1 . . .m, sampled from the distri-

bution P(x,y), and a second (generally much larger) data set without

labels xj, j = 1 . . .M , build a model for regression, classification, etc.

Unsupervised learning

• Given only data without labels xi, i = 1 . . .m, infer properties of P(x)

– eg, estimate of number of modes in a multimodal model.

Anomaly detection

• Given a set of data without labels xi, i = 1 . . .m which is presumed

“normal,” and a second set of unlabelled data xj, j = 1 . . .M , identify

the (presumed rare) elements of the second data set which are not

normal.

Confidence machines

• Build a model that not only guesses the data point’s classification, but

which also produces an estimate of the probability that that point is

correctly classified. (“sixty percent chance of rain”)
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Classifier performance

Generalization error expresses performance on “future” data

E[f ] =
∫

I(y 6= f (x))P(x,y)dx dy

• where I(·) is the indicator function;

it is one if its argument is true, zero if false.

• Optimal solution f ∗ = argminf E[f ] given by f
∗(x) = argmaxy P(y |x)

◦ produces minimum error (aka “Bayes error”); not necessarily zero

◦ requires knowledge of P(x,y)

Empirical or Training error is based on in-sample performance

Et =
∑

i

I(yi 6= f (xi))

• Can be evaluated over training data: (xi,yi), i = 1 . . .m

• Choosing f (x) to minimize Et will not necessarily minimize E

• If Et[f ] is estimated with the same data used to fit the predictor f ,

then Et[f ] will be a biased estimator of E
∗.

Overfit: try “too hard” to fit training data and generalization suffers.
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The Probably Approximately Correct (PAC) Approach

Valiant (1984): Produce a model of the data that. . .

. . . with probability 1 − δ

. . . is accurate to within ε

. . . using computation that is polynomial in 1/δ and 1/ε.

Why not probability one?

• The finite training set is randomly sampled from distribution P(X ,Y ).

With some probability δ � 1, the random sample will be unrepresenta-

tive of the distribution.

Avoids the Bayesian Nightmare

• Probability is P(data|distribution), Not P(distribution|data)

No Free Lunch Theorems (Wolpert 1992, 1995, 1996)

• No reason to expect one learning algorithm to be better than another

• unless you make assumptions about the “uniformity of nature”

• prior assumptions about P(distribution).
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PAC and Boosting

Strong learning: For any ε > 0 and any δ > 0, and access to an unlimited

number of data samples, find a function f (x) such that

• With probablity 1 − δ

• solution is accurate to within ε; ie, P(y 6= f (x)) < ε

• In a number of steps that is polynomial in 1/δ and 1/ε and the number

of data samples employed.

Weak learning: Replace “any ε > 0” with “some ε < 1/2”

Boosting

• Kearns and Valiant posed the question: could a “weak” PAC learner

be “boosted” to a “strong” learner

• Schapire constructed first provably polynomial-time boosting algorithm

The strength of weak learnability. Machine Learning 5:197–227, 1990

• Many improvements followed. . .

Note: no assumptions made about underlying distribution P(X ,Y )

• Any weak learner can be boosted to a strong learner
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AdaBoost

Given data: (xi,yi), i = 1 . . .m; where xi ∈ X , yi ∈ {−1,1}

And a family of “weak learners” h ∈ H; where h : X → {−1,1}

• More general variant: h : X → R

Start with initial distribution of weights: w0i = 1/m

For t = 1, . . . ,T

• Find weak learner ht that minimizes weighted error:

εt =
∑

i

wti I(yi 6= ht(xi))/
∑

i

wti

• Assign weight αt to the learner

◦ Larger weights assigned to learners with smaller errors

◦ Usually, but not necessarily: αt =
1

2
ln




1 − εt
εt





• Adaptively reweight the data points: w t+1i = wti exp(−αtyiht(xi))

◦ Note that the data points which were badly estimated this time

with be more heavily weighted the next time.

Final estimator: ŷ = H(x) = sign





T∑

t=1
αtht(x)




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PAC and Support Vector Machines

Linear decision function: f (x) = βTx + βo

10−1

ε

yf(x)

Classifier: ŷ = sign(f (x))

SVM loss function

L(β, βo) =
1

2
βTβ +C

∑

i

εi

• where εi = max(0,1 − yif (xi))

• convex • margin

Optimization with bounded effort: quadratic programming (QP) problem

• Solution has the form f (x) =




∑

i

αiyix
T
i



x + βo =
∑

i

αiyi
(

xTi x
)

+ βo

Bounded generalization error

• based on Vapnik’s amazing theorem: with probability 1 − δ,

E ≤ Et +

√
√
√
√
√
ν(log(2m/ν) + 1)− log(δ/4)

m

• where ν is the VC dimension: ν ∼ |β|2

• Independent of distribution P(X ,Y )

• Valid for all m
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Kernels and Support Vector Machines

Enables SVM to learn highly nonlinear decision surfaces

Map data to a (usually) higher-dimensional feature space φ : X → F

• For example: φ(x) =













1

x

x2
...













Nonlinear f (x) = βφ(x) + βo is linear in feature space F

Do SVM algorithm (QP problem) in feature space

• But not directly, feature space is too high-dimensional

• Observe that QP algorithm only involves dot products: φ(x)Tφ(x ′)

• Define kernel function: K(x,x ′) = φ(x)Tφ(x ′)

Solution has the form: f (x) =
∑

i

αiyiK(xi,x) + βo

• Often, solution is sparse: many values of αi are zero

• Data xi corresponding to nonzero αi are “support vectors”

Trick: choose mappings φ which lead to convenient kernels
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Using Spatial Information in Multispectral Classification

Ignore spatial properties entirely, and use purely spectral methods

• max likelihood, min distance, Fisher discriminant, SVM, etc.

• k-means and EM for unsupervised classification

Process local spatial features into scratch planes

And treat scratch planes as extra spectral channels

• Texture features (Gabor, Laws, etc)

• Morphological operators (erode, dilate, etc)

• Adaptive/Online feature selection (Genie, Afreet, Grafting, . . . )

Use contiguity property as part of the cost function

• Markov Random Field methods

◦ Bayesian interpretation, MCMC computation, Gibbs sampler,

texture synthesis, simulated annealing, various nightmares. . .

• Direct minimization of the cost function

◦ contig-SVM for supervised

◦ contig-k-means for unsupervised
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“Online” feature selection

Iterate:

• Spatio-spectral features created by applying short “pipelines” of ele-

mentary image-processing operators to the data

◦ various convolutions: smooth, Sobel gradient, Gabor filter, . . .

◦ morphological operators: erode, dilate, open, close,. . .

⇒

[DILATE rD4 wS1]

◦ spectral features: band ratio, band difference, clip, threshold,. . .

• Fixed number of “scratch planes” hold currently employed features

◦ Features are always spatially local

• Pixel-by-pixel classifier applied to scratch (and, optionally, data) planes

◦ Pixels treated as independent samples

◦ Fisher discriminant, support vector machine, etc.

• Based on performance, go back and choose new features
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Contiguity Property for Images

In remote sensing, what is of interest on the ground is usually much larger

than a pixel

• especially terrain categories: lakes, forests, beaches, vegetation

canopies, agricultural fields, golf courses. . .

• few exceptions: sub-pixel beacons, narrow roads

Pixels are not IID samples!

• Two adjacent pixels are more likely to come from the same class

than are two pixels chosen at random from the image.

• This is an almost universal property of images

• How to quantify, how to exploit?
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Markov Random Fields

“If there was something called a noncausal 2D autoregressive model, MRF

would be called that.” – Murat Dundar

Bayesian Image Analysis

• Prior: P(I) is distribution over all possible images,

not having seen the data

• Data: D is an observed image

◦ Think I=idealized, D=dirty

• Likelihood: P(D|I) is probability of observing data D,

given that the true image is I

• Bayes Rule: P(I |D) = P(D|I)P(I)/P(D)

• Maximum a posteriori: IMAP = argmaxI P(D|I)P(I)

MRF is a prior that encourages adjacent pixels to be alike

• Product of pixel probabilities: P(I) = ΠijPij(xij)

• Pixel probabilities only depend on neighbors (Markov property)

Pij(xij) = P(xij|xi±∆i, j±∆j)
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MRF’s for texture synthesis

No data; generate realizations of idealized images consistent with P(I)

Algorithm begins with idealized image: x ∈ {−1,1}

• Smooth image: x ′i =
∑

∆i

w∆ixi+∆i

• Resample image probabilistically: P(x = ±1) =
e±βx

′

eβx
′ + e−βx ′

• Iterate

Characteristic properties of image “texture” a tradeoff

• Strength and nature of smoothing: w∆i

• “Temperature” (1/β) of probabilistic resampling

Left panel: Average over many trials; Right panel: single realization.
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Light smoothing, High temperature

Negative smoothing.

Low temperature (β = 5)

75% white, 25% black
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Markov Random Fields (cont’d)

Prior is MRF: P(I) = ΠijPij(xij) = ΠijP(xij|xi±∆i, j±∆j)

Likelihood model: P(D|I) = ΠijP(dij|xij)

• Let Vij(xij) = − logPij(xij)− logP(dij|xij), so then

P(D|I)P(I) ∝ exp




−

∑

ij

Vij(dij,xij)




 = exp




−

∑

ij

V (dij,xij,xi±∆i, j±∆j)






Invoke thermodynamic analogy

• Call it a Gibbs distribution

• Introduce a temperature T

[P(D|I)P(I)]1/T ∝ exp




−

∑

ij

V (dij,xij,xi±∆i, j±∆j)/T






• and note that as T → 0, we have

[P(D|I)P(I)]1/T → δ(I = IMAP)

Use Markov Chain Monte Carlo (MCMC) to explore space of images I

distributed according to exp(−V (D, I)/T).

• Anneal T → 0, and converge I → IMAP.
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Markov Random Fields (an alternative viewpoint)

A lot of hullabaloo: IMAP = argminIV (D, I).

Take a closer look at V (D, I); typically

V (D, I) =
∑

ij

VDATA(dij,xij) +VCONTIG(xij,xi±∆i, j±∆j)

• VDATA is penalty for label to disagree with data

• VCONTIG is penalty for neighboring pixels to have different labels

You can ask the practitioner to adopt a Bayesian point of view,

• produce an MRF that is appropriate for the imagery at hand,

• produce a model for likelihood of data given a label, and

• spend hours of computer time on huge MCMC runs. . .

Or you can ask for two cost functions:

• VDATA(d,x) expresses the cost of label x when the data is d

• VCONTIG expresses the cost for neighboring pixels to have different labels
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Contiguity and Support Vector Machines

Add a simple VCONTIG term to the SVM loss function

• Quadratic term does not affect mathematical structure of loss function,

so SVM algorithm can still be used

• Provably bounded computation to find optimum

• Inherit SVM’s resistance to overfitting(?)

• Contiguity term does not require labelled data

For linear SVM, effect of contiguity can be expressed as

• Linear preprocessing of data: z = D
−1/2
λ x, or

• Modified linear kernel: K(x,x ′) = xTD−1λ x
′

◦ Suggests interpretation of contiguity property in terms of an

invariance-preserving kernel, as advocated by Schölkopf and Smola,

Learning with Kernels, Chapter 11.

◦ Solution should be “approximately” invariant to the operation of

moving to a neighboring pixel

Method can also be employed for nonlinear kernels
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Contiguity and Linear Support Vector Machines

Decision function: f (x) = βTx + βo

Ordinary SVM loss function

L(β, βo) =
1

2
βTβ +C

∑

i

εi

• where εi = max(0,1 − yif (xi))

Contiguity cost

VCONTIG(xi,xi±∆i) =
∑

∆i

|f (xi)− f (xi+∆i)|
2 =

∑

∆i

βT(xi − xi+∆i)(xi − xi+∆i)
Tβ

Contiguity matrix

D =
2

NN∆

N∑

i=1

∑

∆i

(xi − xi+∆i)(xi − xi+∆i)
T

• where N∆ is number of neighbors (we use N∆ = 8)

• weighted neighborhoods would be a straightforward generalization

Contig-SVM loss function

L(β, βo) =
1

2
βTβ +C

∑

i

εi +
1

2
κβTDβ
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Linear contig-SVM (cont’d)

Loss function

L(β, βo) =
1

2
βTβ +C

∑

i

εi +
1

2
κβTDβ

︸ ︷︷ ︸

• Let λ = κ/(κ + 1) and C∗ = (κ + 1)C, and

• Let Dλ = λD + (1 − λ)I be “regularized” contiguity matrix

Rewrite loss function

L(β, βo) =
1

2
βTDλβ +C

∗∑

i

εi

Regularized contiguity matrix is positive definite: write Dλ = UΛλU
T

• let β∗ = D
1/2
λ β = UΛ

1/2
λ U

Tβ, and

• let z = φ(x) = D
−1/2
λ x = UΛ

−1/2
λ UTx

Then loss function becomes

L(β∗, βo) =
1

2
β∗Tβ +C∗

∑

i

εi

Solution: f (x) =




∑

i

αiyix
T
i D

−1
λ



x + βo =
∑

i

αiyi
(

xTi D
−1
λ x

)

+ βo
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Kernelized contig-SVM

Map x → φ(x)

Contiguity matrix in mapped space:

Dφ =
2

NN∆

N∑

i=1

∑

∆i

(φ(xi)− φ(xi+∆i))(φ(xi)− φ(xi+∆i))
T

Want use contiguity enhanced kernel

KCONTIG(x,x
′) = φ(x)TDφ−1λ φ(x ′)

• But need to evaluate KCONTIG(x,x
′) without evaluating φ(x) directly.

• Can’t evaluate φ(x), but can evaluate K(x,x ′) = φ(x)Tφ(x ′)

◦ this is just the ordinary (non-contig-enhanced) kernel

◦ For convenience, also write Kij = φ(xi)
Tφ(xj)

• Need to express KCONTIG(x,x
′) in terms of K(x,x ′)

Question: can we preprocess the data and then just use the ordinary kernel?

• Answer: I don’t think so

Los Alamos National Laboratory



Simpler (but untested) idea: contig-LDA

Linear Discriminant Analysis (e.g., Fisher discriminant)

• Data xi and associated class label yi

• Class means: xy =
∑

i

1yi=yxi/
∑

i

1yi=y

• Within class covariance: Sw =
∑

i

(xi − xyi)(xi − xyi)
T

• Between class covariance: Sb =
∑

y ,y ′
(xy − xy ′)(xy − xy ′)

T

• Discriminant functions: f (x) = βTx

◦ Want small within-class βTSwβ and large between-class: β
TSbβ.

◦ e.g., max βTSbβ subject to β
TSwβ = 1.

◦ Discriminant(s) given by largest eigenvector(s) of S−1w Sb

Now add a contiguity term

• Want small
∑

i

∑

∆i

|f (xi)− f (xi+∆i)|
2; that is: small βTDβ

• Suggests choosing eigenvectors of ((1 − λ)Sw + λD)
−1Sb
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Contiguity and Unsupervised Classification (clustering)

k-means (Lloyd, 1958)

• Class labels assigned to pixels: xij ∈ {1, . . . ,K}

• Class means dk =
∑

ij

dijδ(xij,k)/
∑

ij

δ(xij,k)

• Minimize in-class variance: VDATA(dij,xij) = (dij − dxij)
2

contig-k-means (Theiler and Gisler, 1997)

• Introduce a penalty term for “discontiguity” among the labels

VCONTIG(xij,xi±∆i, j±∆j) = κ
∑

∆i,∆j
(1 − δ(xij,xi+∆i, j+∆j))

◦ where κ is the κnob that adjusts the relative importance of contiguity

compared to in-class variance

◦ For example: VCONTIG(xij) = 5κ

• Produce an iterative k-means-like algorithm to minimize

V (D, I) =
∑

ij

VDATA(dij,xij) +VCONTIG(xij,xi±∆i, j±∆j)
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Contiguity vs. Compactness

Multispectral Landsat-TM imagery

Seven-band 151×151-pixel image

of Hatch, New Mexico

Segmentation into K = 4 classes

• from 56 bits/pixel to 2 bits/pixel

Can substantially enhance contiguity

at minimal cost to in-class variance
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Conclude

Many remote sensing problems can benefit from machine learning tools

• In many of these problems, Image Analysis plays a central role

Tool(s):

Machine Learning
⇔

Image

Analysis
⇔

Problem(s):

Remote Sensing

• But images are not collections of independent pixels

Focus-of-attention problems

Use of Spatial features

• Select from a large pool of potential features

• Online schemes for “growing” successful features

Exploitation of Contiguity property

• Markov Random Field approaches

• Direct use of discontiguity penalty function: VCONTIG ∼ |f (xi)− f (xi+∆i)|
p

◦ Convexity is a virtue: p ≥ 1 ◦ Robustness is a virtue: p ≤ 1

◦ Preserving mathematical structure is a virtue: p = 2
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