
APPROXIMATE INVERSE AND IMPLICIT
FUNCTIONS USING AN M/NSET VARIATION∗

David W. Dreisigmeyer†
Los Alamos National Laboratory

Los Alamos, NM 87544

February 27, 2007

Abstract

We employ a variation of multivariate or nonlinear state estimation techniques
(M/NSET) in order to approximate a nonlinear mapping from one Euclidean space
into another. Potential applications are approximating the implicit and inverse
function theorems, approximating a chart of a manifold and, designing surrogate
models.

Keywords: multivariate state estimation technique, nonlinear state estimation
technique, manifold charting, implicit function theorem, inverse function theorem,
surrogate models

AMS subject classifications: 26B10, 65D05

1 Introduction

The multivariate and nonlinear state estimation techniques (M/NSET) [1, 4] are methods
for determining if a given observation is in a target set Ω ⊂ Rn. What they attempt to
do is model the identity mapping on Ω using samples from Ω. So, for each x ∈ Ω, we
want to construct a function such that f(x) ≈ x, that is, f ≈ idΩ. Then we can use the
residual ‖f(x)− x‖ to determine if x ∈ Ω or not.

Here we look at extending M/NSET to the following case: instead of trying to
approximate id : Ω → Ω, we want to approximate more general nonlinear mappings
f : Ω → Ψ, where Ψ ⊂ Rm. Specific examples that we have in mind for this are to
approximate the functions arising out of an implicit or inverse function. So, we could
try to approximate the ϕ(y) such that

f(y, ϕ(y)) = 0 (1.1)
∗LA-UR-07-1214
†email: dreisigm@lanl.gov

1

or, the g(y) such that

(g ◦ f)(x) = x. (1.2)

We can use (1.1) to, e.g., put (approximate) local coordinate charts on a manifold M
where y is an element of the tangent space TxM at x ∈M.

Our paper is organized as follows. In Section 2 we give an overview of the standard
M/NSET and state our variation. Section 3 is devoted to an investigation of the
geometry of the algorithm. We give some examples in Section 4. A discussion follows
in Section 5.

2 The M/NSET variation

Standard M/NSET [1, 4] attempts to approximate the identity mapping idΩ on some
set Ω. In order to do this, one starts with a sampling of points xi ∈ Ω and forms the
matrix X = [x1, . . . ,xn]. Then, with this X we define our approximation to idΩ as

x̂ = X(X ⊗X)−1(X ⊗ x) (2.1a)

= îdΩ(x), (2.1b)

where the operation⊗ is some symmetric function acting on the columns of X . So, for
instance, we could take

(X ⊗X)ij = 1− ‖xi − xj‖2
‖xi‖2 + ‖xj‖2

, (2.2)

which is the standard MSET operation. Note in particular that xi = îdΩ(xi) for
xi ∈ X regardless of the definition of (X ⊗X).

A simple generalization of this method is to have the image of our mapping be some
other set Ψ. So now we are trying to approximate some nonlinear mapping f : Ω → Ψ.
For each xi ∈ X ⊂ Ω we will have a corresponding image point yi = f(xi) ∈ Ψ. We
can collect all of these image points into the matrix Y = [y1, . . . ,yn]. Then, instead
of (2.1), we will have the mapping

x̂ = Y (X ⊗X)−1(X ⊗ x) (2.3a)

= f̂(x), (2.3b)

where we have that yi = f̂(xi).

Note that it is fairly easy to update the algorithm by appending/deleting columns
to/from X and Y . This will be equivalent to updating a QR factorization [3]. Now
we’ll look at the geometry of the algorithm in a little more detail.

2

3 The geometry of the algorithm

To begin exploring the geometry of our M/NSET variation, let us begin by using the
QR decomposition of (X ⊗X) to have

(X ⊗X) = QR. (3.1)

Then, (X ⊗ x) = QRy and, in particular, (X ⊗ xi) = QRei, where xi ∈ X and ei is
a standard basis element of Rn. So we have that, see (2.3),

Y (X ⊗X)−1(X ⊗ x) = Y y. (3.2)

The output of our mapping is simply a linear combination of the columns of Y where
the particular combination depends on how we define the ⊗ operation.

The⊗ operation should ideally emphasis those variations in x that lead to variations
in f(x). An extreme case is given by the function

f(x, y) = x2. (3.3)

We want to design a⊗ that only depends on variations in x. For example, we could use

‖x‖ = |x| (3.4)

in (2.2) instead of ‖x‖2.

Now, let us specialize our procedure to the case where (x ⊗ y) = d(‖x − y‖A),
where

‖x − y‖2A = (x − y)T A(x − y) (3.5)

and, d(x) is some appropriately chosen function, e.g., d(x) = exp(−x). We are
splitting the determination of ⊗ into two steps. First, the matrix A is picking our those
variations of x that are important for changes in our function f(x). The function d(x)
is determining what length scale is important. So, if d(x) is highly peeked around
x = 0, only nearby neighbors are important for determining the output of f̂(x), see
(2.3). A flatter d(x) allows further neighbors to have a greater influence in determining
the value of f̂(x). We could even have the situation where, e.g.,

d(x) =
{

d1(x) , 0 ≤ x ≤ 1
d2(x) , x > 1 (3.6)

and/or, A is dependent on the separation of x and y i.e., A = A(‖x − y‖2).

4 Some examples

Our first example is using NSET to approximate the absolute value function f(x) = |x|.
Here we let

(X ⊗X)ij = exp(−|xi − xj |). (4.1)

3

!! !"#$!"#% !"#& !"#' " "#' "#& "#% "#$!
"

"#'

"#&

"#%

"#$

!

()
(

*

*

!! !"#$!"#% !"#& !"#' " "#' "#& "#% "#$!
"

"#+

!

!#+

'

'#+

,
-
./
01
2
-
*3
44
5
4

6*75810159

:/;<.-*751908

=:3>*?90-4<5./0159

Figure 1: The |x| NSET interpolation example.

We randomly choose 50 points uniformly distributed in [−1, 1] as our sample points.
Then 20 new points were also randomly chosen in [−1, 1]. We ran these points through
our NSET operator to find the interpolation. The results are shown in Figure 1. The
average relative error was 4.94%. The average absolute error was .0017.

Our next example will use NSET to approximate the sin−1(x) function. We still
use (4.1) as our definition of ⊗. Here we took 50 randomly chosen points uniformly
distributed on [−π/2, π/2]. These provided the Y for (2.3a). The X was given by
the sine of these points. To test the NSET operator, 20 points where randomly chosen
from [−π/2, π/2]. The sine of these points were the input to the NSET operator. The
average relative error was .51% and, the average absolute error was .0071. The results
are shown in Figure 2.

Our final example will be placing an approximate coordinate chart on a manifold.
As above, we took 50 randomly chosen points uniformly distributed on [−π/2, π/2].
These will be the X matrix for (2.3a) using (4.1) and will place local coordinates on the
unit circle. Our Y matrix will consist of the points in R2 given by [sin(x) cos(x)]T .
We then choose 20 random points from [−π/2, π/2] and, used NSET to approximate
the mapping to the unit circle. The results are shown in Figure 3. The average relative
error of the mapping was .39%.

4

!! !"#$!" !%#$ % %#$ " "#$!
!"

!%#$

%

%#$

"

&
'(
)*
+

,

,

!! !"#$!" !%#$ % %#$ " "#$!
%

%#%!

%#%-

%#%.

%#%/

0
1
23
4'
5
1
,6
77
8
7

9,:8&'4'8(

;3<=21,:8'(4&

>;6?,@(417=8234'8(

Figure 2: The sin−1(x) NSET interpolation example.

5 Discussion

We’ve demonstrated that M/NSET can be usefully employed for approximating implicit
and inverse functions. This extension of the standard M/NSET is obtained by simply
allowing the image of our mapping to differ from the range, compare (2.3a) with (2.1a).
In this way we are no longer concerned with trying to approximate the identity mapping
on our set of interest. We have also seen that the extended M/NSET can be used to
place local coordinate charts on manifolds.

We imagine that the charting procedure outlined here will be useful for implementing
the Lipschitz implicit and inverse function theorems as needed by, e.g., the direct search
methods in [2]. Here the M/NSET variation will provide a surrogate model for the
implicit mapping from the tangent space of a manifold to the manifold. These initial
guesses can then be refined by numerically implementing a Lipschitz implicit function
theorem. As our sampling of the manifold becomes better, we can update the X and Y
matrices to have a better surrogate for the implicit function.

The M/NSET variation could also be useful for more general surrogate models [5].
We would be able to easily update our surrogate when more information about the true
function becomes available. This update could be done by adding/deleting columns
to/from X and Y and/or, modifying the definition of ⊗.

5

!! !"#$!" !%#$ % %#$ " "#$!
%

%#%%$

%#%"

%#%"$

%#%!

%#%!$

%#%&

'
(
)*
+,
-
(
./
00
1
0

23*0+.21104,5*+(

!" !%#6 !%#7 !%#8 !%#! % %#! %#8 %#7 %#6 "
%

%#!

%#8

%#7

%#6

"

9.:1;,+,15

<
.:
1
;
,+
,1
5

.

.

=*>?)(.:1,5+;

@=/A.B5+(0?1)*+,15

Figure 3: The unit circle NSET charting example.

References

[1] C. L. Black, R. E. Uhrig, and J. W. Hines. System modeling and instrument
calibration verification with a nonlinear state estimation technique. In Proceedings
of the Maintenance and Reliability Conference, 1998.

[2] D. W. Dreisigmeyer. Direct search methods over Lipschitz manifolds. Submitted
to SIOPT.

[3] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins, 3rd edition,
1996.

[4] K. C. Gross, R. M. Singer, S. W. Wegericj, J. P. Herzog, R. van Alstine, and
F. Bockhorst. Application of a model-based fault detection system to nuclear plant
signals. In Proceedings of the 9th International Conference on Intelligent Systems
Application to Power Systems, 1997.

[5] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K. Tucker.
Surrogate-based analysis and optimization. Progress in Aerospace Sciences, 41:1–
28, 2005.

6

