
DIRECT SEARCH METHODS OVER LIPSCHITZ
MANIFOLDS∗

David W. Dreisigmeyer†
Los Alamos National Laboratory

Los Alamos, NM 87545

February 27, 2007

Abstract

We extend direct search methods to optimization problems that include equality
constraints given by Lipschitz functions. The equality constraints are assumed
to implicitly define a Lipschitz manifold. Numerically implementing the inverse
(implicit) function theorem allows us to define a new problem on the tangent spaces
of the manifold. We can then use a direct search method on the tangent spaces
to solve the new optimization problem without any equality constraints. Solving
this related problem implicitly solves the original optimization problem. Our main
example utilizes the LTMADS algorithm for the direct search method. However,
other direct search methods can be employed. Convergence results trivially carry
over to our new procedure under mild assumptions.
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1 Introduction

One difficulty with the lower-triangular mesh adaptive direct search method (LTMADS)
[3] is its inability to handle equality constraints. This was relieved somewhat in [14, 15]
by defining LTMADS over Riemannian manifolds. Here, one takes any equality
constraints as implicitly defining a C2 Riemannian manifold M. Then, LTMADS
can be performed in the tangent space TxM of M at a point x ∈ M. However,
the amount of information one needs about the equality constraint E(x) = 0 can be
prohibitive in actually running the algorithms in [14, 15]. Specifically, gradient and
Hessian information about E(x) was required. Here we will relax these requirements.
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This results in a more practical algorithm that is also aesthetically more pleasing since
we will only have to assume that E(x) is Lipschitz continuous. So now we will arrive
at a completely non-smooth version of LTMADS over a Lipschitz manifold M.

The method employed in [14, 15] was to define a mapping Expx : TxM→M that
allowed one to pullback the objective function O(x) and inequality constraints I(x)
from M onto TxM. That is, given a tangent vector ω ∈ TxM, a nonlinear system
of ODEs was solved to find a unique point y ∈M. One then implicitly defined new
functions Ô(ω) and Î(ω) on TxM by letting Ô(ω) .= O(y) and Î(ω) .= I(y). Since
TxM $ Rm if M is an m-dimensional manifold, the standard LTMADS could be
performed on TxM.

The idea that will be employed here is similar to that in [14, 15]. We will still use the
pullback feature in order to perform LTMADS on the ‘tangent spaces’ ofM. However,
instead of using the Expx mapping that is defined over all of TxM, we will numerically
implement the inverse (implicit) function theorem to perform the pullback. This makes
our procedure similar to a non-smooth generalized reduced gradient method [5]. All of
the convergence results for LTMADS can be carried over without modification to our
method under some very mild restrictions.

For simplicity, we will initially assume that our manifold M and, hence, E(x),
are C1. This allows us to develop the algorithm using the standard inverse (implicit)
function theorem in its contraction mapping fixed point formulation. After the basic
algorithm is developed, we can then drop the C1 assumption on M and develop the
fully non-smooth algorithm. This will require only slight modifications of our initial
method.

Our paper is organized as follows. In Section 2 we give the general solution method
whenM is assumed to be C1 and the gradient information∇xE(x) is available. We also
state the assumptions needed to (trivially) show our convergence results. In Section 3
we relax our assumptions onM. Now we only takeM to be a Lipschitz manifold. The
required modifications to the procedure in Section 2 are given. We give an example of
our algorithm over a Lipschitz manifold in Section 4. A discussion follows in Section 5.

2 The C1 manifold case

Here we will extend the LTMADS method in [3] to optimization problems with smooth
equality constraints when gradient information is available for the equality constraints.
The general problem we will look at is

min
x∈Rn+m

O(x) (2.1a)

subject to : E(x) = 0 (2.1b)
I(x) ≤ 0, (2.1c)

where E : Rn+m → Rn. The functions O(x) and I(x) in (2.1) will all be taken to
be Lipschitz continuous. Let Ω .= {x | I(x) ≤ 0}. We will additionally assume that
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M .= {x | E(x) = 0} is a C1 manifold of dimension m, at least for N .= M ∩ Ω.
Also, the gradient information ∇xE(x) is taken as accessible for this algorithm.

Assume we begin with an initial point x ∈ N and we find TxM. One can then
use the contraction mapping fixed point proof of the implicit function theorem to find a
unique point y ∈M for any ω ∈ TxM around a neighborhood of the origin of TxM
[18, 26, 27]. To see this let

G
.= ∇zÊ(0,0), (2.2)

where we have translated Rn+m by x and rotated our space so the TxM corresponds to
the first m directions to find Ê(ω, z), where Ê(0,0) = 0. Here ω ∈ Rm and z ∈ Rn.
By assumption G is invertible. Then the mapping

L(ω, z) .= z−G−1Ê(ω, z) (2.3)

is a contraction mapping on a neighborhood of 0 ∈ Rn. Finding the fixed point ẑ of
(2.3) for a fixed ω gives us the corresponding point y ∈M, namely y = [ ωT ẑT ]T .
A method for solving (2.3) is given in [26, 27].

The mapping in (2.3) places coordinates onM around x [26, 27]. The y found using
(2.3) is assigned on M the coordinates ω. This can be done in some region around
x ∈ M. Once we have found the point y that corresponds to ω ∈ TxM, we can
pullback the function values O(y) and I(y) to TxM by simply assigning their values
to ω. This implicitly defines new functions Ô(ω) and Î(ω) on TxM. If we leave the
neighborhood of TxMwhere this procedure is valid, we assign a value of Ô(ω) = +∞
to our pulled back objective function. Note that the Lipschitz conditions of O(x) and
I(x) are retained under this pullback procedure. It is this pullback procedure that allows
us to extend LTMADS to (2.1). We will eventually, under our assumptions given below,
be able to perform the standard LTMADS algorithm in TxM for some x ∈M.

The method given by Procedure 2.1 is very simple. We begin with an initial feasible
point x ∈ N . We then find the tangent space TxM. This is used in (2.3) to find our
coordinate system for a neighborhood Ux ⊂M around x. Implicitly, we can pullback
O(x) and I(x) from M to TxM to define the pulled-back functions Î(ω) and Ô(ω).
Then we can do a standard LTMADS iteration in TxM $ Rm using the Lipschitz
functions Î(ω) and Ô(ω). Now, after this iterate one of two things can happen. First,
we may find an improving point ω̂ ∈ TxM that corresponds to a feasible point y ∈ N .
If this happens, we then let our current incumbent solution become y and switch to
TyM to perform LTMADS in. Otherwise, x is a minimal frame center. In this case
we will refine the mesh in TxM and perform another LTMADS iterate in TxM. Note
that we do not worry about the (optional) SEARCH step in Procedure 2.1, which the
user can freely specify.

We can trivially prove the convergence of Procedure 2.1 under some mild as-
sumptions. First, assume we remain in a compact region on N , which is a standard
assumption. Then we can cover this region with a finite number of coordinate sys-
tems constructed via (2.3). Additionally, assume the iterates of the LTMADS algorithm
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Procedure 2.1 The General Method for Problem (2.1)

1. Let the equality constraints E(x) implicitly define a Lipschitz manifold M.

2. Find an initial feasible point x ∈ N .

3. Use (2.3) to pullback the inequality constraints I(x) and the objective function
O(x) from M to TxM.

4. Do an LTMADS iteration in TxM.

5. If an improved feasible point y ∈ N is found in Step 4, let x → y. Goto
Step 3.

6. If the stopping conditions are met, return x and stop. Else, refine the LTMADS
mesh and go to Step 4.

eventually enter and remain in one of these coordinate systems. This could be achieved,
e.g., by only allowing a finite number of SEARCH steps in the LTMADS algorithm. In
this case the SEARCH step does not have to evaluate points on some fixed mesh as in
LTMADS. The reason is that if y ∈ N is a successful search point, we will switch to
TyM and ‘restart’ the LTMADS algorithm. Since this can only happen a finite number
of times, eventually we will be performing LTMADS without the optional SEARCH
step. Now we need to slightly modify Step 5 in Procedure 2.1. We want to remain in
a single tangent space TxM as the algorithm ‘settles down’ into the final coordinate
patch Ux ⊂M. This could be achieved, e.g., by only switching to a new tangent space
TyM if our improving point ω̂ satisfies the condition ‖ω̂‖ ≥ ε for some user specified
constant ε > 0.

So we have the following situation. Initially we move carefully but ‘carefreely’
overN , trying to find a nice point x ∈ N that can live up to our exacting requirements.
Eventually, the algorithm will settle into some neighborhoodUx ⊂M around a feasible
pointx ∈ N . Then we will just be doing the standard LTMADS inTxM $ Rm with the
implicitly defined Lipschitz constraint functions Î(ω) and Lipschitz objective function
Ô(ω). So all of the convergence results proven for LTMADS in [3] carry over without
modification to our algorithm in Procedure 2.1, though now the convergence analysis
is done in TxM.

We note that Procedure 2.1 is not restricted to using LTMADS. Any MADS method
in [3] can be used. In fact, any direct search method can be performed in TxM after
the algorithm settles down into the final region Ux ⊂M. This includes, e.g., the filter
methods in [2, 4, 11] and the frame based methods in [24].

Procedure 2.1 is similar to the generalized reduced gradient (GRG) method [5].
However, we do not perform a line search to minimize O(x) along some predetermined
direction in TxM. Rather, we implicitly define a mesh in TxM as in the standard
LTMADS algorithm. Also, instead of minimizing O(x) restricted to TxM and then
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projecting down onto N , we (eventually) minimize Ô(ω) by pulling-back O(x) from
M onto TxM. It is this pullback procedure that makes it easy to prove convergence
results for Procedure 2.1. This should be contrasted with the difficulty of proving
convergence results for the GRG method, which does not utilize the pullback procedure
[5]. It may be possible to define an intrinsic GRG method that minimizes O(x) on M
directly [16]. This would require one to have access to∇xE(x) and∇xxE(x) in order
to find the geodesics on M. We will not concern ourselves with this here. Finally, our
method relies on no derivative information about O(x) or I(x), which GRG may use.
The derivative information for O(x) would be used to minimize O(x) over TxM in
GRG.

3 The Lipschitz manifold case

Now we consider the case where our manifold M is only Lipschitz. That is, E(x)
in (2.1b) is only assumed to be Lipschitz. The modification of Procedure 2.1 in
Section 2 is rather minor and, creates no theoretical problems for our method. The only
difference is that we will need to employ some Lipschitz version of the implicit function
theorem. Other than this modification, Procedure 2.1 is unchanged. Additionally, the
convergence properties given in Section 2 still hold when M is a Lipschitz manifold.

As we will see, actually implementing a Lipschitz implicit function theorem is
not as straightforward computationally as the contraction mapping in (2.3). This
creates potential numerical difficulties when employing the pullback procedure on
Lipschitz manifolds. However, since the implicit function theorem is called repeatedly
in Procedure 2.1, it is crucial that any solution method be highly efficient.

Eventually we want some version of a Lipschitz implicit function theorem that
can actually be implemented numerically. An obvious criterion would be to have the
implicit function theorem proved constructively with an explicit contraction mapping.
We will eventually get to this position but, first let us start easy.

3.1 A Lipschitz implicit function theorem

Instead of relying on the usual inverse or implicit function theorems, we now need to
use some form of non-smooth version of these theorems to construct our coordinate
patches. There are many forms of implicit and/or inverse function theorems for Lips-
chitz functions, e.g., [9, 10, 12, 17, 18, 19, 20, 23, 28]. Each of these overcomes the
lack of smoothness by placing additional assumptions on E(x). Here we will only
concern ourselves with the implicit function theorem in [9, 10, 23]. We’ll need to
develop some machinery in order to state the theorem. Assume that E(x) is Lipschitz.
Then, Rademacher’s theorem states that E(x) is differentiable almost everywhere. Let
ΩE(x) be the set of points where E(x) fails to be differentiable. Then we can start with
the following definition:
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Definition 3.1 The Generalized Jacobian [9]

The generalized Jacobian ∂E(x) of E(x) at x is the closed convex hull of all the
matrices Z obtained as the limit of a sequence of the form ∇xE(xi) where xi → x
and xi /∈ ΩE(x). Symbolically, we have:

∂E(x) .= co
{

lim
xi→x

∇xE(xi) | xi /∈ ΩE(x)

}
. (3.1)

We’ll need one more definition to state our Lipschitzian version of the implicit function
theorem. Let ∂zE(x) denote the set of all n-by-n matrices M such that there exists
an n-by-m matrix N and a unitary matrix P where [ N M ]P ∈ ∂E(x), with
Px = [ wT zT ]T .

Definition 3.2 Maximal and Uniformly Maximal Rank [9, 30]

We say that ∂E(x) is of maximal rank at the point x if every matrix in ∂E(x) is of
maximal rank. The generalized Jacobian ∂E(x) is said to have uniformly maximal
rank at x if there exists an n-dimensional vector z such that ∂zE(x) has maximal rank.

We can now state the following implicit function theorem:

Theorem 3.3 The Implicit Function Theorem Version I [9, 10, 23]

Let ∂zE(ŵ, ẑ) have maximal rank. Then there exists a neighborhood W of ŵ and a
Lipschitz function ϕ : W → Rn such that ϕ(ŵ) = ẑ and, for every w ∈ W ,

E(w,ϕ(w)) = E(ŵ, ẑ). (3.2)

Now we’re going to specialize Theorem 3.3 to implicitly defined Lipschitz mani-
folds. First let us give one more definition.

Definition 3.4 Uniformly Regular Value [30]

A vector y ∈ Rn is a uniformly regular value of E(x) if, for each x ∈ E−1(y),
∂E(x) has uniformly maximal rank at x.

This leads to the type of manifolds we will consider.

Theorem 3.5 Uniformly Regular Level Set [30]

If y is a uniformly regular value of E(x), then E−1(y) is an m-dimensional Lipschitz
manifold or is empty. We call E(x) = y a uniformly regular level set.

For the level set E(x) = 0, we will take 0 as being a uniformly regular value of E(x),
where we assume E−1(0) -= ∅. Then we will have an implicitly defined Lipschitz
manifold M.
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We need to turn our implicit function theorem into a practical algorithm. That
is, we want to derive an equation similar to (2.3). When deriving (2.3) we had that
ω ∈ TxM. The important feature of TxM is that TxM ∩ NxM = {0}, where
NxM = span([∇xE(x)]T ) are the normal directions to M at x. Any other m-
dimensional linear subspace T ⊂ Rn+m such that T ∩NxM = {0} could also have
been used. Now, with some abuse of notation, ∂xE(Ux) = ∂yE(y)U, y = Ux, for
any unitary matrix U. If we let U = [ W Z ] such that x = Ww + Zz and, assume
∂zE(Wŵ + Zẑ) = ∂xE(x̂)Z has maximal rank, then, by Theorem 3.3, we can let
T = W. ∂xE(x̂)Z has maximal rank if and only if W ∩ span(JT ) = {0} for every
J ∈ ∂xE(x). So, the requirement that T ∩ span([∇xE(x)]T ) = {0} when M is C1 is
replaced by the requirement that T∩ span(JT ) = {0} for every J ∈ ∂xE(x) when M
is Lipschitz. Since, by assumption, E−1(0) is a nonempty uniformly regular level set,
we are guaranteed that an appropriate T exists. So, theoretically we are done.

3.2 Numerical issues

Practically, though, we need to be able to find an appropriate T and, numerically
implement some Lipschitz implicit function theorem. Unfortunately, the proof of
Theorem 3.3 does not provide a constructive way for finding the implicit function
ϕ(w). There’s a more general Lipschitz implicit function theorem given by Kummer
in [19] that will prove more valuable for us (see also [17, 18]). Define the set

∆E(x;u) =
{
v

∣∣∣∣v = lim
k

E(xk + λku)−E(xk)
λk

,xk → x,λk ↓ 0
}

. (3.3)

Then we have the following implicit function theorem:

Theorem 3.6 The Implicit Function Theorem Version II [17, 18, 19]

Let E(ŵ, ẑ) = ŷ. Assume 0 /∈ ∆E((ŵ, ẑ); (0, ζ)) for any ζ ∈ Rn, ‖ζ‖ = 1. Then,
there exists neighborhoods Z of ẑ and W of (ŷ, ŵ) such that, for every (y,w) ∈ W
there is a unique z = ϕ(y,w) ∈ Z, where E(w,ϕ(y,w)) = y. Further, ϕ(y,w) is
Lipschitz on W .

First we’ll concern ourselves with finding the implicit function ϕ(0,w). What
we’re after is some numerically implementable contraction mapping similar to (2.3).
Such a mapping is given in [19]. First, assume E(0,0) = 0 and fix some w ∈ T,
for an appropriately chosen T. Now let yk = E(0, zk) − E(w, zk) and, let zk+1 be
the solution to the equation E(0, z) = yk. If yk+1 = yk, then z .= zk+1 is such
that E(w, z) = 0. An intelligent choice for z0 is obviously important for making this
method practical.

There are many methods for solving E(0, z) = yk, see, e.g., [21, 22, 25, 29, 32, 33]
for some recent algorithms along with their references. Typically these solution methods
require extra assumptions on E(x) beyond the Lipschitz condition in order to prove
convergence results. An additional way of solving E(0, z) = yk is to employ some
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of the techniques developed in [1] for constructing piecewise-linear approximations to
M. We’ll employ the latter technique in Section 4 to illustrate its use.

We’re really looking for the inverse function Φ(y) in a neighborhood of y = 0
where E(0,Φ(y)) = y. Being able to efficiently construct an approximation Φ̃(y) to
Φ(y) is especially important as the direct search method converges and we remain in
a fixed T around a point x ∈M. Then Φ̃(y) will, hopefully, provide us with a good
approximation to zk+1. This ultimate goal should be kept in mind when trying to solve
E(0, z) = yk. For example, it may be worthwhile to store all previous evaluations
of E(x) in order to reuse them at future iterations of Procedure 2.1. A procedure for
approximating implicit and inverse functions is presented in [13].

Looking at (3.3), we see that Kummer’s implicit function theorem also gives us a
practical way of trying to find an appropriate T. Fix a small λ > 0 and, choose a random
unitary matrix U = [u1, . . . ,un+m], where ui ∈ Rn+m. Now find the quantities
ni = ‖E(λui)− E(0)‖ for i = 1, . . . , n + m. Then, we will let T = [ui1 , . . . ,uim ],
where 0 ≤ ni1 ≤ . . . ≤ nim ≤ . . . ≤ nin+m . Choosing T in this way helps us
guarantee that 0 /∈ ∆E(0;y), where yj = 0 for j = i1, . . . , im, ‖y‖ = 1 and
E(0) = 0.

It is somewhat important to choose a random U above. The reason is, we don’t want
to end up with a T where for some w ∈ T we have an uncountably infinite number of
points z ∈M such that E(w, z) = 0. This situation can cause the direct search method
to become ‘stuck’ at a nonlocal solution on M. It also suggests that we try a restart
procedure after finding a potential solution to ensure it is a local minimizer on M.
This restart procedure would involve choosing a new T at our current potential solution
and rerunning the direct search algorithm. An example of this potential situation is
given in Section 4. A restart procedure would also be warranted if the implicit function
algorithm consistently fails. This would indicate a poor choice for T.

An alternate, and probably more intelligent, method for finding T would be to use
the SVD based procedure in [6, 7] for determining an approximation to the tangent
plane. Roughly, one takes ̂ points yı̂ ∈ M within an epsilon ball of a given point
x ∈M. Then the first m left singular vectors of the matrix [ y1 − x, . . . ,ŷ − x ] will
approximately span TxM. This works quite well for Riemannian manifolds, especially
when one knows a priori the dimensionality of the manifold, as we do. Additionally,
it requires no derivative information. However, there are no theoretical guarantees for
its performance when we are dealing with a Lipschitz manifold. Also, the method is
somewhat sensitive to the curvature of the manifold. Finally, the method can breakdown
if the manifold almost self-intersects at x. That is, around x there are points on M that
are ‘close’ to x when measured extrinsically in the ambient space but, are ‘far’ from
x when measured intrinsically on M. The last two limitations of the SVD procedure
become less important, if M is Riemannian, as our optimization algorithm approaches
a solution because we can shrink our epsilon ball arbitrarily small. Also, the SVD
procedure in [6, 7] at least gives us an intelligent method for determining TxM when
M is actually C1 but we do not have access to ∇xE(x). A restart procedure is still a
good idea even if the SVD method is used to find T, especially if we suspect that M is
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Lipschitz. Again, we’ll see an example of why this is so in Section 4.

4 Example

Now we’ll look at an example similar to the one used in [3, 14] to demonstrate the
LTMADS algorithm. There, a linear objective function was minimized in Rn over
a closed n-dimensional ball [3] or, an (n − 1)-dimensional hypersphere [14]. Here,
we will minimize a linear objective function over the (n − 1)-dimensional hypercube
embedded in Rn. So now we are dealing with a Lipschitz manifold rather than a
Riemannian manifold. Our optimization problem is:

min
x∈Rn

O(x) = 1T x (4.1a)

subject to : E(x) = ‖x‖∞ − 3n = 0 (4.1b)

where n = 5, 10, 20 or 50. The optimal solution is given by x = −3n1 with a
corresponding optimal value of −3n2.

Note that if we were to use the fixed matrix U = I to determine our T matrix, it is
possible for the direct search algorithm to become ‘stuck’ in a nonlocal optimizer. To see
this, consider the case where n = 2 and choose an initial starting point [0, 6]T ∈M.
Then T = span([6, 0]T ). As the algorithm proceeds, we will end up at the point
[−6, 6]T which is not a local optimizer on M. The reason is that the ‘west’ face of
M is normal to T and, the implicit function theorem will not allow us to move away
from [−6, 6]T with our current (fixed) T. This is the reason a random U should be used
to determine T and/or a restart procedure should be performed with a different T after
locating a potential solution.

In order to solve E(0, z) = yk when implementing Kummer’s implicit function
theorem, we will borrow some techniques developed in [1]. Assume we have chosen an
appropriate T and want to implement the implicit function theorem for w ∈ T. Now,
unless w ∈ M, we will have E(w) > 0 or E(w) < 0. For simplicity, assume we
have E(w) > 0, so that w lies outside of the hypercube. In order to find the point
x ∈M that corresponds to w, we will move in the one-dimensional subspace N

.= T⊥.
Assume we do this, and find a new point w such that E(w) < 0. Then we are assured
that M must intersect the line segment [w, w] that connects w to w in Rn. We can
then begin to subdivide this line segment and, can easily determine which piece M
intersects because the endpoints must have different signs for E(x). In this way we
can ‘zoom in’ on the point x ∈M that corresponds to w ∈ T. This technique can be
extended to arbitrary uniformly regular level sets.

This problem was solved using the maximal positive basis LTMADS [3] in Tk at
iteration k using Dk = [ Tk − Tk ]. The bl were saved and reused to construct the B
matrices, though the B matrices in LTMADS were multiplied by the Tk to construct
the POLL points on the current mesh. This is similar to what was done in [14] for doing
LTMADS over C2 Riemannian manifolds using geodesics. The Tk were given by the
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Figure 1: The objective function value versus number of function evaluations for
problem (4.1) using the LTMADS algorithm in Tk.

best (n − 1) columns of the Q matrix from a QR decomposition of a perturbation of
the identity matrix, using λ = 10−8 to determine the best columns for the procedure
outlined in Section 3.2. We started with the initial values ∆m

0 = ∆m
max = 1 and

∆p
0 = ∆p

max = 1. If we found an improving point, a SEARCH step was done in
the same ‘tangent’ direction by moving 4 times the step length, in Tk, that gave
the improving point. We terminated the algorithm whenever ∆p

k ≤ 10−12 or, when
k > 600n. The algorithm was run five times for each n, starting with a randomly chosen
point on the unit hypercube. For n = 20 and 50 we always exceeded the maximum
allowed function evaluations. The results are shown in Figure 1. The algorithm always
converged to (nearly) the correct solution, even when n = 20 or 50.

5 Discussion

In [14, 15] it was assumed that the manifolds were C2 and, that Jacobian and Hessian
information was available for the equality constraints. Then we could use the Expx

mapping of TxM into M to pullback the objective and inequality constraints from M
to TxM. This method is somewhat unsatisfactory for two reasons. First, assuming that
Hessian information is available for the equality constraints restricts the practicality
of the algorithm. Secondly, the resulting method is not completely a derivative-free
technique.

We’ve seen how to extend the techniques developed in [14, 15] to C1 and Lipschitz
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manifolds that are implicitly defined as uniformly regular level sets. Now we employ
an implicit function theorem in order to do our pullback procedure instead of the Expx

mapping. This has the disadvantage of typically requiring us to move from one tangent
space to another because the implicit function theorem only works locally around the
origin of TxM, while the mapping Expx works globally in TxM. This is really not too
great of a disadvantage since one will usually switch tangent spaces when employing
the methods in [14, 15] in order to make the Expx mapping cheaper to calculate. The
main advantage of our new technique is that less derivative information is required in
order to employ it. Also, as in [14, 15], proving convergence results is trivial under
rather mild restrictions.

Theoretically the C1 and Lischitz cases are entirely equivalent. We must admit,
however, that the C1 case is an easier to implement and, currently, a more practical
algorithm than the Lipschitz case. This is because the C1 version of the implicit
function theorem gives us a readily implementable solution method in (2.3). In contrast,
Kummer’s Lipschitz implicit function theorem requires us to implement a Lipschitz
version of the inverse function theorem. Solution methods for this problem are not
currently as well developed as they are for the C1 case. On a more aesthetic note, the
Lipschitz case does provide us with a completely derivative-free method for handling
both inequality and equality constraints. Also, as the solution methods for non-smooth
equations improve, dealing with Lipschitz manifolds will become a more manageable
task.

Potentially the most fruitful avenue for extending all of these methods is to examine
how one can deal with a breakdown in the manifold structure. For smooth manifolds
this breakdown would be indicated by a non-maximal rank Jacobian of our equality
constraints. This falls under the heading of singularity theory and the more specialized,
but also more impressively named, catastrophe theory. Another area that may prove
interesting is the applications of Morse theory to our optimization problems. Roughly,
Morse theory will inform us about the topology of our manifold and, when we may
need to split an optimization problem into ‘sub-pieces’ in order to try and find a global
solution to our problem. We refer the reader to [8, 31] for some research in this area.
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