
EQUALITY CONSTRAINTS, RIEMANNIAN
MANIFOLDS AND DIRECT SEARCH METHODS∗

David W. Dreisigmeyer†

Los Alamos National Laboratory
Los Alamos, NM 87545

December 15, 2006

Abstract

We present a general procedure for handling equality constraints in optimization
problems that is of particular use in direct search methods. The central idea is to
treat the equality constraints as implicitly defining a Riemannian manifold. Then
the function and inequality constraints can be pulled-back to the tangent spaces
of this manifold. One can then deal with the resulting inequality constrained
optimization problem using any method of one’s choosing. An advantage of this
procedure is the implicit reduction in dimensionality of the original problem to
that of the manifold. Additionally, under some restrictions, convergence results for
the method used to solve the inequality constrained optimization problem can be
carried over directly to our procedure.
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1 Introduction

The problem we will look at is

min
x∈Rn

f(x) (1.1a)

subject to : g(x) = 0 (1.1b)
h(x) ≤ 0, (1.1c)

where g : Rn → Rm. Our approach to dealing with (1.1) will be to employ some
techniques from differential geometry to efficiently ensure that (1.1b) is always satisfied.
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The way we will do this is by treating g(x) = 0 as implicitly defining a manifold and,
require that we always remain on this manifold as the algorithm proceeds. Since this
effectively removes the equality constraints from further consideration, we then only
need to concern ourselves with solving an inequality constrained optimization problem.

An outline of the general procedure we will use is the following:

1. Let the equality constraints g(x) = 0 implicitly define a manifold M.

2. Find an initial feasible point y ∈M.

3. Pullback the inequality constraints h(x) ≤ 0 and the function f(x) from M to
the tangent spaces of M.

4. Use any desired procedure to solve the resulting reduced dimensional problem.

The specific reduced dimensional problem we will have to solve is

min
w∈R(n−m)

f̂(w) (1.2a)

subject to : ĥ(w) ≤ 0, (1.2b)

where that hat denotes the functions f and h after they are pulled-back to the tangent
spaces and, w is a tangent vector. There are certain advantages to this procedure. First,
we have an implicit reduction in the dimensionality of the problem from n to (n−m),
the dimension of the manifold. Secondly, we can choose any method we want to solve
(1.2). With some qualifications, the convergence results associated with the method
chosen to solve (1.2) carry over without modification to (1.1).

Our procedure would seem to be particular useful when employed in conjunction
with the filter methods in [1, 8], the MADS algorithms in [2] or, the frame methods
in [4, 5, 11]. These procedures can effectively deal with inequality constraints and,
thus, are viable solution techniques for (1.2). By treating the equality constraints as
a manifold, which conveniently allows us to always satisfy them, we can then easily
extend the above algorithms to (1.1). Additionally, it may be difficult to use any
derivative information about f̂(w) and ĥ(w) after the pullback operation. So direct
search methods may be the only methods that can be effectively employed to solve
(1.2).

Our paper is organized as follows. In section 2 we outline our general procedure
and, relax some of the assumptions in section 3. An example is given in section 4.
Finally, section 5 is a discussion of our results.

2 The general procedure

First let us look at the manifolds we will be working with. Useful reference material
for this section is [9, 10, 12]. The Morse-Sard theorem tells us that with probability 1,
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(1.1b) gives us an implicitly defined Riemannian manifold M of dimension (n−m).
Using this theorem, we will always assume that the Jacobian ∇g(x) is full rank. This
is simply the requirement that our set of points defined by (1.1b) is actually a manifold.
A manifold M is, for us, a set of points that locally ‘looks’ like R(n−m). We call M
Riemannian if we have a sense of distances onM. As an example, letM be implicitly
defined by the function g : R3 → R1 given by

g(x) = xT x− 1 (2.1)
= 0.

So our M is the unit sphere S2 embedded in R3 which has dimension (3 − 1) = 2.
Locally S2 ‘looks’ like R2. That is, we can find, for a small enough region U ⊂ S2, an
invertible and differentiable mapping from U into R2. We also have a sense of distances
on S2 that are inherited from it’s embedding in R3. Given two points p,q ∈ S2, we
take the distance between p and q as the length of the shortest path on S2 that connects
p to q. This shortest path is called a geodesic.

Now, take a point y ∈ M. The tangent space to M at y, denoted TyM, is
the collection of all of the tangent vectors to M at y. Since all of our manifolds
are embedded in Rn, we can concretely imagine this tangent space as being a copy
of R(n−m) translated to y. Specifically, we have that TyM is given by null[∇g(y)]
translated to the base point y. Given a tangent vector w ∈ TyM, we can find a geodesic
path x(τ) ∈ M such that x(0) = y and ẋ(0) = w. The specific equation we need to
solve is [7]

ẍk = ẋT

[
m∑

i=1

[
−gT

xk

[
∇g(∇g)T

]−1
]i

∇2gi

]
ẋ, (2.2)

where xk is the kth component of x, gi is the ith component of g(x) and, gxk is the
partial derivative of g(x) with respect to xk. Equation (2.2) is the key to our procedure.
Notice that we require that g(x) be C2 in order to use (2.2). Also, if g(x) is C2 then so
is M. Equation (2.2) can be practically implemented in conjunction with direct search
methods [6]. We will not concern ourselves with the actual numerical solution of (2.2)
in this paper.

A manifold is called geodesically complete if all of TyM can be mapped into M
for every y ∈ M. The mapping is denoted by Expy : TyM→M. We will, for now,
assume that our manifolds are geodesically complete. This implies that x(τ) given by
(2.2) will be defined for all τ ∈ R. Geodesic completeness also implies that any two
points on our manifold can be connected by a geodesic. An example of a geodesically
complete manifold is S2 defined by (2.1).

Now, given our M implicitly defined by (1.1b), the inequality constraints in (1.1c)
will confine us to allowed regions of M. We will take (1.1c) as implicitly defining
k full dimensional disjoint regions Vi ⊂ Rn, i = 1, . . . , k, with Vi

⋂
M 6= ∅. Let

Ui = Vi

⋂
M, where we will assume that the Ui have dimension (n−m) everywhere.

Then the Ui are the feasible sets to (1.1). Let us start at an initial point y ∈ Uj .
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Then it is a simple matter to apply, e.g., the pattern search method in [1] to TyM. In
particular, the inequality constraints in (1.1c) will become ‘black-box’ constraints on
the allowed tangent vectors w ∈ TyM. It is these tangent vectors that, when used as
initial conditions in (2.2), will result in a point x(1) ∈ Uj . Note two things. First,
if we start in Uj , we will always remain around Uj , assuming the Ui are sufficiently
separated. Depending on the algorithm used to solve (1.2), it may be possible to jump
from Uj to Ul if they lie close enough together on M. This will not typically be the
case and, under the assumption of the geodesic completeness of M, will not cause any
problems even if it does occur. Secondly, given a tangent vector w, we evaluate the
corresponding geodesic at τ = 1. Then the length that we travelled from x(0) = y to
x(1) will be the same as the Euclidean length of w.

Some general comments are in order. Why should the inequality constraints in
(1.1c) be taken as ‘black-box’ constraints on TyM? The reason is that it would often
be very difficult to restate the constraints that define Uj directly in terms of constraints
on TyM. Instead, we will solve (2.2) and find what the constraint value is at our new
point on the manifold. We will then assign this value, along with the function evaluation,
to the corresponding tangent vector. Also, the assumption of geodesic completeness
tells us that we can reach any point in Uj from any initial point y ∈ Uj . This is really
what we need for the algorithm, so the assumption thatM is geodesically complete can
be relaxed. We examine this more in section 3. Finally, all of the results concerning
the method chosen to solve (1.2) carry over to our extension without modification.
This is because (2.2) allows us to implicitly restate the problem of minimizing f(x) in
(1.1a) over Uj ⊂M as one of minimizing f̂(w) over TyM' R(n−m), subject to our
‘black-box’ constraints.

Our general method is given by Procedure 2.1. Note that in Step 4, it may be
rather difficult to use any method other than a direct search one. The methods in
[1, 2, 5] seem particularly well suited to be used in conjunction with Procedure 2.1.
The reason for this is that we will not normally have explicit formulas for f̂(w) or
ĥ(w). So typically the availability of derivative information will, at best, be limited
and/or expensive to calculate. This situation can be mitigated if we can reasonably
find or estimate ∇wx(τ)|τ=1, where x(τ) is the geodesic found via (2.2) with initial
condition x(0) = y and ẋ(0) = w. Then we can find or estimate, e.g.,

∇wf̂(w) = ∇wf(x(τ)) |τ=1

= [∇wx(τ)]T∇xf(x(τ)) |τ=1 . (2.3)

For the direct search methods, one could employ the simplex gradient method in [3] for
estimating the gradient.

There are three key assumptions we have made in this section:

1. M is geodesically complete;

2. M is C2, and;

3. M is connected, which is implied by 1.
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Procedure 2.1 The General Method for Problem (1.1)

1. Let the equality constraints g(x) = 0 implicitly define a manifoldM. Assume
that M is geodesically complete.

2. Find an initial feasible point y ∈M.

3. Use the geodesic formula (2.2) to pullback the inequality constraints h(x) ≤ 0
and, the function f(x) from M to TyM. That is, given any tangent vector
w ∈ TyM that results in a geodesic x(τ) such that x(1) = z, associate with
w the function values h(z) and f(z). Call these pulled-back functions ĥ(w)
and f̂(w).

4. Use any desired procedure to solve the resulting reduced dimensional problem
given by (1.2).

5. Let w∗ be the solution to (1.2) found in Step 4. If x∗(τ) is the geodesic
corresponding to w∗ via (2.2) and, z∗ = x∗(1), then z∗ is the solution to (1.1).

We look at relaxing 1 in section 3. We will not relax 2 since this is required for (2.2).
Assumption 3 will also not be dealt with in this paper. So, if M consists of, e.g., two
pieces and, our initial point y is on one of the pieces, we assume we remain on the
initial piece.

3 Relaxing the geodesic completeness assumption

Now we look at relaxing our assumption that M is geodesically complete. What we
will do is allow ourselves to move around onM initially. All we need is that eventually
our procedure will enter and remain in a neighborhood U ⊂ M such that there is a
point y ∈ U that can be connected via a geodesic to any other point in U . Under this
assumption of ‘local geodesic completeness’, we can use this y as our initial feasible
point in Procedure 2.1. This allows us to again carry over the convergence results of
the method used to solve (1.2) to our modified algorithm. We call U a star-shaped set
at y [13]. That is, any x ∈ U can be connected to y by a geodesic that lies completely
in U .

This modified algorithm allows us to significantly extend Procedure 2.1. The basic
idea is this. We can employ any method we wish to find a feasible point y that will
give us the star-shaped set property we desire. Once we find such a y, we use this in
Procedure 2.1 as our initial point. Now we can use any, potentially different, method we
desire to solve (1.2). Since the convergence results for the second method we choose
carry over, we now have convergence results for our new algorithm. As long as we
eventually find such a y in a finite number of steps, we are guaranteed this carry over
of convergence results. This may require, e.g., restricting ourselves to a finite number
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of search steps in a direct search method.

Let us give an example. Assume we thinky1 is a good choice to use in Procedure 2.1.
However, as we attempt to solve (1.2), suppose we find that y1 is not sufficient and,
instead, we need to switch to y2. Now, if it turns out that y2 does give us the required
star-shaped set property, we then have our convergence guarantees. Some optimization
methods over Riemannian manifolds are covered in [6, 7, 13].

Various other relaxations are also possible. For instance, we do not necessarily have
to require that our base point y satisfy the inequality constraints in (1.1c). In this case
we only need that the feasible region Uj is reachable via geodesics through y defined
by tangent vectors in TyM. This may be especially useful for geodesically complete
manifolds. Also, if a frame based method as in [4, 11] is used to solve (1.2), it may be
possible to relax the above requirement of finding a fixed base point y in a finite number
of steps and still carry over the convergence results. Such a method is presented in [6]
for problems without any inequality constraints. Finally, we assume that (2.2) always
had a solution at τ = 1. If this is not the case, one would need to refine the tangent
vectors used as initial conditions in (2.2). The reason we refine the tangent vectors is
because their lengths correspond to the length travelled along the geodesic from τ = 0
to τ = 1.

4 An example

Here we’ll look at a relatively simple but illuminating example. Let us consider
minimizing some function f(x) over the upper half of S2. So our optimization problem
is

min
x∈R3

f(x) (4.1a)

subject to : xT x = 1 (4.1b)
z ≥ 0. (4.1c)

Then (2.2) is given by

ẍk = −xkẋT ẋ. (4.2)

Now, if we take y to be, e.g., the north pole of S2, we can solve (4.2) with the initial
conditions x(0) = y and ẋ(0) = w ∈ TyS2. This is all we need to use Procedure 2.1.

The example here is simple enough that we can write down explicitly the problem
(1.2) that Procedure 2.1 is solving implicitly. The first thing is to switch to spherical
coordinates, so that (4.1) becomes

min
θ,φ

f̃(θ, φ) (4.3a)

subject to : φ ≤ π

2
. (4.3b)
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Now we can rewrite every w ∈ TyS2 in polar coordinates as

w = ‖w‖ [w1 cos(θ) + w2 sin(θ)] , (4.4)

where we have aligned the coordinates vectors wi, i ∈ {1, 2}, in TyS2 so that we can
use the same θ coordinate as we use on S2. Additionally, the constraint on φ becomes
a constraint on the allowed w to be used as an initial condition in (4.2). Specifically,
since the length travelled by the geodesic x(τ) from τ = 0 to τ = 1 is given by ‖w‖,
we have that ‖w‖ = φ. Then, (4.3) can be rewritten as

min
w∈R2

f̂(w) (4.5a)

subject to : ‖w‖ ≤ π

2
, (4.5b)

which is the same form as in (1.2).

Using Procedure 2.1 to solve our initial problem in (4.1) means that we are implicitly
solving (4.5). Any method that one would choose to solve (4.5) can also be used in
Procedure 2.1 to find the solution to (4.1). Generally, any method that one would choose
to solve (1.2) can also be used in Procedure 2.1 to find the solution to (1.1). However,
for this example we were able to derive explicit formulas for f̂(w) and our inequality
constraint. So we could use a solution method that relies on derivative information.
Typically this would not be the case and, direct search methods would be the algorithms
of choice to solve (1.2).

5 Discussion

We’ve shown how to deal with equality constraints in optimization problems by treating
them as implicitly defining a Riemannian manifold. By using this framework, the
equality constraints can be removed from the original problem. We then have an
implicitly defined optimization problem that only has inequality constraints. Then
methods like those in [1, 2, 5, 6, 8] can be extended to optimization problems that
have both inequality and equality constraints. Additionally, the dimensionality of the
original problem is reduced to the dimensionality of the manifold. In particular, our
procedure does not require the introduction of any slack variables as in [6].
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